Alternative uses for crushed stone products generated to meet the raw material needs of asphalt production in Hungary

User Rating:  / 0


L.Ézsiás,, Széchenyi István University, Győr, Hungary

S.Fischer*,, Széchenyi István University, Győr, Hungary

* Corresponding author e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

повний текст / full article

Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2023, (5): 066 - 071


In Hungary, quarries that produce stone products for wearing courses of asphalt pavements also produce a significant amount of 0/4, 0/8 and 4/8 mm fractions. Because of Hungary’s pavement design and asphalt production practices, these fractions do not have a suitable market and can thus be sold on alternative markets.

To demonstrate the feasibility of using crushed fractions of 0/4 and 0/8 mm in the protection and base layers of asphalt pavements instead of sandy gravel with 0/22 mm fraction.

The CBR method was applied to evaluate the comparability of characteristics such as particle size distribution and load-bearing capacity. The combination of the Proctor and CBR tests allowed someone to compare the expected technological characteristics of the dominant and alternative aggregate types, such as their sensitivity to water and load-bearing capacity.

The results demonstrated that the performance characteristics of conventionally used sandy gravel with a size of 0/22 mm can be achieved and exceeded by crushed material with much smaller maximum grain sizes – i.e., 0/4 and 0/8 mm.

The paper presents an original study that contradicts the industry’s actual decline of crushed stone (0/4 and 0/8 mm fractions) for asphalt pavement protection layers. The potential effectiveness and functionality of the proposed coating are demonstrated through convincing tests, and thus new data and insights are introduced into the Hungarian construction industry’s practice.

Practical value.
The test results greatly helped in achieving the high demands of the private industrial project by proposing an alternative variant of crushed stone of 0/8 mm fraction rather than the originally planned dominant sand and gravel material. The asphalt paving experience on this site clearly demonstrated the viability of the alternative aggregate option for Hungarian roads.

asphalt pavement, sand and gravel products, crushed stone, alternative raw materials, load-bearing capacity, Proctor tests, CBR


1. Fischer, S., & Szürke, S. K. (2023). Detection process of energy loss in electric railway vehicles. Facta Universitatis, Series: Mechanical Engineering, 21(1), 81-99.

2. Gáspár, L., Horvát, F., & Lublóy, L. (2011). Lifetime of transport infrastructure facilities. Universitas-Győr Nonprofit Kft., Győr, 323 p.

3. Kurhan, M. B., Kurhan, D. M., Husak, M. A., & Hmelevska, N. (2022). Increasing the efficiency of the railway operation in the specialization of directions for freight and passenger transportation. Acta Polytechnica Hungarica, 19(3), 231-244.

4. Taran, I., & Litvin, V. (2018). Determination of rational parameters for urban bus route with combined operating mode. Transport Problems, 13(4), 157-171.

5. Saukenova, I., Oliskevych, M., Taran, I., Toktamyssova, A., Aliakbarkyzy, D., & Pelo, R. (2022). Optimization of schedules for early garbage collection and disposal in the megapolis. Eastern-European Journal of Enterprise Technologies, 1(3-115), 13-23.

6. Sładkowski, A., Utegenova, A., Kolga, A. D., Gavrishev, S. E., Stolpovskikh, I., & Taran, I. (2019). Improving the efficiency of using dump trucks under conditions of career at open mining works. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 36-42.

7. Czinder, B., Vásárhelyi, B., & Török, Á. (2021). Long-term abrasion of rocks assessed by micro-Deval tests and estimation of the abrasion process of rock types based on strength parameters. Engineering Geology, 282, 105996.

8. Mussin, A., Imashev, A., Matayev, A., Abeuov, Ye., Shaike, N., & Kuttybayev, A. (2023). Reduction of ore dilution when mining low-thickness ore bodies by means of artificial maintenance of the mined-out area. Mining of Mineral Deposits, 17(1), 35-42.

9. Zholmagambetov, N., Khalikova, E., Demin, V., Balabas, A., Abdrashev, R., & Suiintayeva, S. (2023). Ensuring a safe geomechanical state of the rock mass surrounding the mine workings in the Karaganda coal basin, Kazakhstan. Mining of Mineral Deposits, 17(1), 74-83.

10. Károlyfi, K. (2017). The effect of saturation degree of cement paste on fair-faced concrete surfaces. Építöanyag (Online), (2), 55.

11. Kuchak, A. J. T., Marinkovic, D., & Zehn, M. (2020). Finite element model updating – Case study of a rail damper. Structural Engineering and Mechanics, 73(1), 27-35.

12. Kuchak, A. J. T., Marinkovic, D., & Zehn, M. (2021). Parametric Investigation of a Rail Damper Design Based on a Lab-Scaled Model. Journal of Vibration Engineering and Technologies, 9(1), 51-60.

13. Szalai, S., & Dogossy, G. (2021). Speckle pattern optimization for DIC technologies. Acta Technica Jaurinensis, 14(3), 228-243.

14. Taran, I., & Klymenko, I. (2017). Analysis of hydrostatic mechanical transmission efficiency in the process of wheeled vehicle braking. Transport Problems, 12(Special Edition), 45-56.

15. Fischer, S., Harangozó, D., Németh, D., Kocsis, B., Sysyn, M., Kurhan, D., & Brautigam, A. (2023). Investigation of Heat-Affected Zones of Thermite Rail Weldings. Facta Universitatis, Series: Mechanical Engineering (accepted manuscript as an article in Online First stage).

16. Kocsis Szürke, S., Kovács, G., Sysyn, M., Liu, J., & Fischer, S. (2023). Numerical Optimization of Battery Heat Management of Electric Vehicles. Journal of Applied and Computational Mechanics, 9(4), 1076-1092.

17. SNAP-SEE project: Sustainable Aggregates Planning in South East Europe. Retrieved from

18. 100-year-old Hungarian Geological Institute (2023, August 27). Geological map of Hungary. Retrieved from

19. Sustainable roads – Optimizing sustainable roads on a national economic level, Professional publication, by the Hungarian Road Administration (2013). Retrieved from

20. Fladvad, M., & Ulvik, A. (2021). Large-size aggregates for road construction – a review of standard specifications and test methods. Bulletin of Engineering Geology and the Environment, 80(12), 8847-8859.

21. Ézsiás, L. (2009). Analyzing the reliability of test methods for earthworks. Közlekedésépítési Szemle, 59(2), 15-23. Retrieved from

22. Budiarto, A. (2018). The influence of replacement of course aggregate material with crushed stone to the CBR value on Aggregate Class B. AIP Conference Proceedings (Human-Dedicated Sustainable Product and Process Design: Materials, Resources, and Energy: Proceedings of the 4th International Conference on Engineering, Technology, and Industrial Application (ICETIA) 2017), pp. 13-14, December 2017, Surakarta, Indonesia, 1977(1), 020033.

23. Satyanarayana, P. V. V., Prem Teja, R., Harshanandan, T., & Lewis Chandra, K. (2013). A study on the use of crushed stone aggregate and crusher dust mixes in flexible pavements. International Journal of Scientific & Engineering Research, 4(11), 1126.

24. Hungarian Standards Institute (1989). Bearing capacity test on pavement structures. Plate bearing test (MSZ 2509-3:1989). Retrieved from

25. European Committee for Standardization (2012). Unbound and hydraulically bound mixtures. Part 2: Test methods for laboratory reference density and water content. Proctor compaction (EN 13286-2:2010/AC:2012). Retrieved from

26. European Committee for Standardization (2021). Unbound and hydraulically bound mixtures. Part 47: Test method for the determination of California bearing ratio, immediate bearing index and linear swelling (EN 13286-47:2021). Retrieved from

27. European Committee for Standardization (2012). Tests for geometrical properties of aggregates – Part 1: Determination of particle size distribution – Sieving method (EN 933-1:2012). Retrieved from

28. Magyar Közút Nonprofit Zrt. (2007). General geotechnical rules for the establishment of public roads (e-UT 06.02.11). Retrieved from



This Month
All days

Guest Book

If you have questions, comments or suggestions, you can write them in our "Guest Book"

Registration data

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Journal was registered by Ministry of Justice of Ukraine.
Registration number КВ No.17742-6592PR dated April 27, 2011.


D.Yavornytskyi ave.,19, pavilion 3, room 24-а, Dnipro, 49005
Tel.: +38 (056) 746 32 79.
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
You are here: Home Archive by issue 2023 Content №5 2023 Alternative uses for crushed stone products generated to meet the raw material needs of asphalt production in Hungary