Mathematical model for forecasting the process of electric power generation by photoelectric stations
- Details
- Category: Content №1 2021
- Last Updated on 05 March 2021
- Published on 30 November -0001
- Hits: 3032
Authors:
Ya.V.Batsala, orcid.org/0000-0003-4964-407X, Ivano-Frankivsk National Technical University Oil and Gas, Ivano-Frankivsk, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
I.V.Hlad, orcid.org/0000-0002-8247-655X, Ivano-Frankivsk National Technical University Oil and Gas, Ivano-Frankivsk, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
I.I.Yaremak, orcid.org/0000-0002-0698-0367, Ivano-Frankivsk National Technical University Oil and Gas, Ivano-Frankivsk, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
O.I.Kiianiuk, orcid.org/0000-0001-9959-5822, Ivano-Frankivsk National Technical University Oil and Gas, Ivano-Frankivsk, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2021, (1): 111 - 116
https://doi.org/10.33271/nvngu/2021-1/111
Abstract:
Purpose. Improving the efficiency of photovoltaic power plants in power systems by creating a model for forecasting the amount of electricity produced in the form of a harmonic function and determining the prospects for using the selected mathematical software to develop software applications.
Methodology. To determine the amount of electricity generated by photovoltaic plants per day and year, statistical methods are applied using the harmonic function which allows taking into account the main meteorological factors of power change of photomodules. A technique is proposed for taking into account the level of generation by photovoltaic stations to track changes in voltage levels in the connection nodes.
Findings. Mathematical models for forecasting the electricity generation of photovoltaic stations for different time ranges are built. The influence of weather factors, the length of daylight and the structure of the local generation system on the level of electricity generated by photovoltaic plants is investigated. Necessity is conditioned to use a harmonic function for forecasting the amount of electricity produced, which improves the efficiency of calculations for new and existing power plants.
Originality. The factors of the influence of daylight hours and cloudiness on the level of electricity generation by photovoltaic stations are taken into account, as well as meteorological data that make it possible to predict the value of the amount of electricity generated for a certain period of time. The dependences of the amount of generated electricity by photovoltaic stations are obtained in the form of a harmonious function with reference to a coefficient that takes into account the cloud level for predicting generation volumes.
Practical value. Created mathematical models of forecasting by means of harmonic function and analysis of voltage change in nodes of local networks allow increasing the efficiency of photovoltaic stations, simplify calculation of change of levels of voltages in a electric network, the forecasted values of the generated electric power on the day ahead system on the basis of duration of the light day, meteorological data and other external factors at commissioning of photovoltaic stations.
Keywords: photovoltaic station, harmonic function, ARIMA model, energy efficiency, local generation
References.
1. Maurisio Soto, Xiao Qu, Rohini Kapoor, & Travis Galoppo (2019). Applying Data Science to Improve Solar Power Production and Reliability. INFORMS Workshop on Data Science, 1-12. Retrieved from https://www.cs.cmu.edu/~msotogon/Papers/ApplyingDataScience2019.pdf.
2. Lezhniuk, P.D., Komar, V.O., Kravchuk, S.V., & Didichenko, Ye.S. (2017). Analysis of meteorological parameters for hourly forecasting of electricity generation by photovoltaic power plants for the day ahead. Enerhetyka ta kompiuterno-intehrovani tekhnolohii v APK, 1(6), 27-31. Retrieved from http://dspace.khntusg.com.ua/bitstream/123456789/2183/1/8.pdf.
3. Mei, F., Pan, Y., Zhu, K., & Zheng, J. (2018). A hybrid online forecasting model for ultrashort-term photovoltaic power generation, Sustainability, 10(3), 820. https://doi.org/10.3390/su10030820.
4. Tuohy, A., Zack, J., Haupt, S. E., Sharp, J., Ahlstrom,M., Dise, S., , & Collier, C. (2015). Solar Forecasting: Methods, Challenges, and Performance. IEEE Power and Energy Magazine, 13(6), 50-59. https://doi.org/10.1109/MPE.2015.2461351.
5. Demchyk, Ya.M., & Rozen, V.P. (2019). Estimation of error of forecast models and forecasts of consumed electricity at energy market facilities. Power Engineering: economics, technique, ecology, (4), 69-78. https://doi.org/10.20535/1813-5420.4.2019.200489.
6. Dzendzeliuk, O., Kostiv, L., & Rabyk, V. (2013). Developing ARIMA time series models for forecasting meteorological data in a programing language R. Electronics and information technologies, 3, 211-219.
7. Sunny Portal. PV System Data (n.d.). Retrieved from https://www.sunnyportal.com/Templates/PublicPage.aspx?page=0fa455f6-64b8-4475-b66e-b01cb5a0836d.
8. Meteoblue delivers local weather information (n.d.). Retrieved from https://www.meteoblue.com/.
9. WetterRadar & Warnungen. Wetter Online Meteorologische Dienstleistungen GmbH. Retrieved from https://www.weatherandradar.com/apps/.
10. Lezhniuk, P.D., Komar, V.O., & Kravchuk, S.V. (2016). Estimation of probabilistic characteristics of solar power plant generation in the problem of intellectualization of local electrical systems. Visnyk NTU KhPI, (18), 92-100.
11. Lezhniuk, P.D., Komar, V.O., Kravchuk, S.V., & Bandura, I.O. (2019). Photovoltaic stations with storage as an element of balancing mode in the local power system. Naukovi notatky. Lutsk, (65), 129-136. Retrieved from http://notatki.com.ua.
12. Javed, K., Ashfaq, H., Singh, R., Hussain, S.S., & Ustun,T.S. (2019). Design and Performance Analysis of a Stand-alonePV System with Hybrid Energy Storage for Rural India. Electronics, 8(952), 16. https://doi.org/10.3390/electronics8090952.
13. Hlad, I.V., & Batsala, Ya.V. (2017). Influence of solar power plants on low-voltage distribution networks. Enerhetyka. Ekonomika, tekhnolohii, (3), 119-123. https://doi.org/10.20535/1813-5420.3.2017.117378.
14. Fedoriv, M.Y. (2017). Increasing reliability and energy efficiency of electric driven boring units. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 93-98.
15. Weniger, J., Bergner, J., & Quaschning, V. (2014). Integration of PV Power and Load Forecasts into the Operation of Residential PV Battery Systems. Conference 4th Solar Integration Workshop at Berlin, 1-9. https://doi.org/10.13140/2.1.3048.9283.
Newer news items:
- Protection of the subsoil of the continental shelf of Ukraine by international and national instrumentalities - 05/03/2021 00:36
- Formation of motivational mechanism in strategic management of a diversified enterprise - 05/03/2021 00:36
- Strategic enterprise management based on the modeling of its economic security - 05/03/2021 00:36
- Institutional and socio-economic factors of the educational trend in Ukraine in the context of European integration - 05/03/2021 00:36
- Identification of globalization threats to the economic sovereignty of countries with transition economies - 05/03/2021 00:36
- Company business process optimization as an imperative of its economic security - 05/03/2021 00:36
- Investigation of the possibility of reducing errors in determining the coordinates of objects indoors by multi-frequency method - 05/03/2021 00:36
- Financing of environmental programs for industrial waste management in times of crisis - 05/03/2021 00:36
- Providing the environmental safety by increasing the efficiency of firefighting in unsheltered timber warehouses - 05/03/2021 00:36
- Improvement of the membrane-free electrolysis process of hydrogen and oxygen production - 05/03/2021 00:36
Older news items:
- Method for optimization of switching frequency in frequency converters - 05/03/2021 00:36
- Experimental study on an overhead crane passing a rail track joint - 05/03/2021 00:36
- Shallow tunnel face stability analysis using finite elements - 05/03/2021 00:36
- Dynamic loads in self-aligning gear transmissions of heavy loaded machines - 05/03/2021 00:36
- A deformation mode in a cold rolling condition to provide the necessary texture of the Ti-3Al-2.5V alloy - 05/03/2021 00:36
- Kinetics of quartz sand and its mixtures drying by microwave radiation - 05/03/2021 00:36
- Direct method of studying heat exchange in multilayered bodies of basic geometric forms with imperfect heat contact - 05/03/2021 00:36
- Mathematical modeling of the surface roughness of the grinding wheel during straightening - 05/03/2021 00:36
- The method for determining the parameters of the diagrams of a truncated-wedge destruction of cylindrical samples of rocks - 05/03/2021 00:36
- Influence of technological process parameters on qualitative characteristics of coal thermolysis products - 05/03/2021 00:36