Dynamic loads in self-aligning gear transmissions of heavy loaded machines
- Details
- Category: Content №1 2021
- Last Updated on 05 March 2021
- Published on 30 November -0001
- Hits: 2869
Authors:
B.V.Vinogradov, orcid.org/0000-0002-9600-0739, University of Chemical Technology, Dnipro, Ukraine, -mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
D.O.Fedin, orcid.org/0000-0001-6037-1178, University of Chemical Technology, Dnipro, Ukraine, -mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
V.I.Samusia, orcid.org/0000-0002-6073-9558, Dnipro University of Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
D.L.Kolosov, orcid.org/0000-0003-0585-5908, Dnipro University of Technology, Dnipro, Ukraine, -mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2021, (1): 084 - 090
https://doi.org/10.33271/nvngu/2021-1/084
Abstract:
Purpose. Development of a mathematical model of a heavy loaded gear transmission with a self-aligning drive gear; evaluation of the dynamic load on the gear transmission in the gear alignment process.
Methodology. The calculation schematic and equations of the relative motion of the self-aligning drive gear are formed using the methods of rigid body dynamics. Analytical expressions for the gear self-alignment time, collision velocity during the alignment and dynamic load factor are obtained by integrating an ordinary differential equation. Methods of the linear theory for oscillations are used to determine the dynamic factor.
Findings. The article investigates the state-of-art design and mathematical models of the self-aligning gear. An equation for the relative motion of the moving part of the gear has been formed using the methods of rigid body dynamics. It is shown that by using the proposed hypotheses, the movement of the gear can be reduced to rotation about the instantaneous axis. The influence of geometric and dynamic parameters of the ball mill drive on dynamic loads in the open gear transmission is investigated. The gear alignment speed dependences on the tooth mesh misalignment angle in the gear transmission and the inertial parameters of the gear have been obtained. The obtained dependencies were used to calculate the time and speed of the gear alignment in the open gear transmission of the ball mill 5.5 6.5 (central discharge ball mill). It is shown that in the real range of mesh misalignment angles and gear parameters, the time of the gear alignment is several orders of magnitude less than the time of teeth re-engagement. In the presence of the variable component of the mesh misalignment angle, the gear will constantly make a relative motion with strikes; depending on the current value of the mesh misalignment angle, the dynamic load on the gear transmission can be significant. It is shown that when assessing the efficacy of self-aligning gears, it is necessary to take into account a possible increase in dynamic loads. The dynamic factor and the load factor are calculated for the nominal value of the mesh misalignment angle in the open gear transmission of 5.5 6.5 ball mills.
Originality. A mathematical model of the dynamics of a self-aligning gear transmission in heavy duty machine drives has been developed. A quantitative assessment of internal dynamic load factor in an open gear transmission of 5.5 6.5 ball mills has been carried out.
Practical value. A method for determining the dynamic component of the load on a gear transmission containing a self-aligning drive gear has been developed.
Keywords: gear transmission, self-aligning gear, dynamic load, load factor
References.
1. Rajagopal, M., Kumar, N.S., & Rao, P.N. (2016). Minimizing Tooth Mesh Misalignment in Heavy Duty Tractor Transmission. SAE Technical Paper, 2016-01-8069. https://doi.org/10.4271/2016-01-8069.
2. Jiang, H., Shao, Y., & Mechefske, C.K. (2015). The influence of mesh misalignment on the dynamic characteristics of helical gears including sliding friction. Journal of Mechanical Science and Technology, 29, 4563-4573. https://doi.org/10.1007/s12206-015-1001-5.
3. Parey, A., Jain, N., & Koria, S. (2014). Failure analysis of air cooled condenser gearbox. Case Studies in Engineering Failure Analysis, 2, 150-156. https://doi.org/10.1016/j.csefa.2014.08.003.
4. Vinogradov, B.V., & Fedin, D.O. (2016). The stress state of heavy loaded open gearing with incomplete teeth contact. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 35-40.
5. Rotatable drum (n.d.). Retrieved from https://patents.google.com/patent/US4911554A/en?q=pinion&assignee=krupp+polysius&oq=krupp+polysius+pinion.
6. Drive for a rotary drum (n.d.). Retrieved from https://patents.google.com/patent/US20120312113A1/en?q=pinion&assignee=krupp+polysius&oq=krupp+polysius+pinion.
7. Fabrice Lessard, Michel Pasquier, Fabrice Wavelet, Brady McNaughton, & Frank J. Tozlu (n.d.). QdX4TM, A Mechanical Drive Train Solution for High-Powered Grinding Mills (CMD, Ferry-Capitain and Metso). Retrieved from https://ru.scribd.com/document/296770415/42-Frank-Tozlu-QdX4-A-Mechanical-Drive-Train-Solution-for-High-Powered-Grinding-Mills.
8. Van de Vijfeijken, M., Filidore, A., Walbert, M., & Marks,A. (2012). Copper mountain: overview on the grinding mills and their dual pinion mill drives. SAG Conference, Vancouver BC September, (pp. 1-20). Retrieved from https://library.e.abb.com/public/d43c675f94ad66abc125793d0056168e/COPPER%20MOUNTAIN%20-%20OVERVIEW%20ON%20THE%20GRINDING%20MILLS%20AND%20THEIR%20DUAL%20PINION%20MILL%20DRIVES.pdf.
9. ISO 6336-1:2006. Calculation of load capacity of spur and helical gears Part 1: Basic principles, introduction and general influence factors. Geneva: International Organization for Standardization (n.d.). Retrieved from https://www.iso.org/standard/36327.html.
Newer news items:
- Identification of globalization threats to the economic sovereignty of countries with transition economies - 05/03/2021 00:36
- Company business process optimization as an imperative of its economic security - 05/03/2021 00:36
- Investigation of the possibility of reducing errors in determining the coordinates of objects indoors by multi-frequency method - 05/03/2021 00:36
- Financing of environmental programs for industrial waste management in times of crisis - 05/03/2021 00:36
- Providing the environmental safety by increasing the efficiency of firefighting in unsheltered timber warehouses - 05/03/2021 00:36
- Improvement of the membrane-free electrolysis process of hydrogen and oxygen production - 05/03/2021 00:36
- Mathematical model for forecasting the process of electric power generation by photoelectric stations - 05/03/2021 00:36
- Method for optimization of switching frequency in frequency converters - 05/03/2021 00:36
- Experimental study on an overhead crane passing a rail track joint - 05/03/2021 00:36
- Shallow tunnel face stability analysis using finite elements - 05/03/2021 00:36
Older news items:
- A deformation mode in a cold rolling condition to provide the necessary texture of the Ti-3Al-2.5V alloy - 05/03/2021 00:36
- Kinetics of quartz sand and its mixtures drying by microwave radiation - 05/03/2021 00:36
- Direct method of studying heat exchange in multilayered bodies of basic geometric forms with imperfect heat contact - 05/03/2021 00:36
- Mathematical modeling of the surface roughness of the grinding wheel during straightening - 05/03/2021 00:36
- The method for determining the parameters of the diagrams of a truncated-wedge destruction of cylindrical samples of rocks - 05/03/2021 00:36
- Influence of technological process parameters on qualitative characteristics of coal thermolysis products - 05/03/2021 00:36
- Analytical studies on constrained particle settling velocity in a water suspension of fly ash from thermal power plants - 05/03/2021 00:36
- Increasing the efficiency of water shut-off in oil wells using sodium silicate - 05/03/2021 00:36
- Improvement of sub-level caving mining methods during high-grade iron ore mining - 05/03/2021 00:36
- Geological and mining-engineering peculiarities of implementation of hydromechanical drilling principles - 05/03/2021 00:35