Shallow tunnel face stability analysis using finite elements
- Details
- Category: Content №1 2021
- Last Updated on 05 March 2021
- Published on 30 November -0001
- Hits: 3358
Authors:
I.Kahoul, Badji Mokhtar University, Annaba, Algeria, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
S.Yahyaoui, National Polytechnic School, Algiers, Algeria
Y.Mehidi, Larbi Tebessi University, Tebessa, Algeria
Y.Khadri, Badji Mokhtar University, Annaba, Algeria, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2021, (1): 091 - 097
https://doi.org/10.33271/nvngu/2021-1/091
Abstract:
Purpose. This work aims to study the tunnel face stability (Algiers subway Tunnel) and evaluate common numerical procedures that are used for analyzing the tunnel face stability. Two-dimensional (2D) and three-dimensional (3D) Finite Element (FE) modeling using PLAXIS programs.
Methodology. Tunneling is executed by the NATM method; two types of calculations are used. The first one is done by reducing the applied face pressure until the face is collapsed. The second calculation method involves the Phi-c (the angle of internal friction and bonding) reduction method, which is based on calculating the safety factor of the shear strength of the soil. Both methods are applied for 2D and 3D FE-modelling.
Findings. It is found that determining the applied face pressure is an important consideration to avoid face failure or excessive deformations with numerical methods resulting in more precise findings than analytical methods.
Originality. The originality of this work is the use of both 2D and 3D modelling, combined with two approaches: structural analysis of plastic state and Phi-c reduction method based on calculating the safety factor of the shear strength of the soil.
Practical value. This study illustrates that the reducing shear strength method is much better than the reducing applied face pressure method. Moreover, the result of 3D FE-modelling gives a better prediction comparing with the 2D FE-modelling results.
Keywords: tunnel, numerical modelling, tunnel face stability, Plaxis 2D, Plaxis 3D tunnel, Algiers subway tunnel
References.
1. Elmanan, A.M.A., & Elarabi, H. (2016). Analytical and numerical analysis for tunnel heading stability. Conference paper: The Seventh Graduate Studies and Scientific Research Conference, Khartoum, Sudan. Retrieved from https://www.researchgate.net/publication/299377004_ANALYTICAL_AND_NUMERICAL_ANALYSIS_FOR_TUNNEL_HEADING_STABILITY.
2. Ahmed, S.N.A., & David, N.C. (2019). Numerical modelling of tunnel face stability in homogeneous and layered soft ground. Tunnelling and Underground Space Technology, 94. https://doi.org/10.1016/j.tust.2019.103096.
3. Riaz, A., Jamil, S.M., Asif, M., & Akhtar, K. (2016). Tunnel support design by comparison of empirical and finite element analysis of the Nahakki tunnel in Mohmand agency, Pakistan. Studia Geotechnica et Mechanica, 38, 75-84. https://doi.org/10.1515/sgem-2016-0008.
4. Zizka, Z., Kube, S., Scher, B., & Thewes, M. (2020). Influence of stagnation gradient for face support calculation in Slurry Shield Tunnelling. Geomechanics and Tunnelling, 13, 372-381. https://doi:10.1002/geot.202000009.
5. Leca, E., & Dormieux, L. (2015). Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material. Gotechnique, 40(4), 58-606. https://doi.org/10.1680/geot.1990.40.4.581.
6. Li, L., Zheng, W., & Wang, Y. (2018). Prediction of Moment Redistribution in Statically Indeterminate Reinforced Concrete Structures Using Artificial Neural Network and Support Vector Regression. Applied Sciences, 9(28). https://doi.org/10.3390/app9010028.
7. Fu, Y., & Zheng, H. (2017). Numerical Research on Face Stability of Pipe Jacking Tunnel in Soft Clay. Chinese Journal of Underground Space and Engineering. Retrieved from https://en.cnki.com.cn/Article_en/CJFDTotal-BASE2017S2020.htm.
8. Padua-Fernndez, R., Rivera-Constantino, R., & Marengo-Mogolln, H. (2011). Diseo geotcnico del tnel de desfogue del proyecto hidroelctrico La Yesca, Mxico. Conference proceedings, Pan-Am CGS Geotechnical Conference: 64th Canadian Geotechnical Conference and 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Toronto, Ontario, Canada. Retrieved from https://docplayer.es/21790193-Diseno-geotecnico-del-tunel-de-desfogue-del-proyecto-hidroelectrico-la-yesca-mexico.html.
9. Brinkgreve, R.B.J. (Ed.) (2018). PLAXIS 2D Manuals. General Information, Tutorial Manual, Reference Manual, Material Models Manual, Scientific Manual. Delft University of Technology & PLAXIS. ISBN-13: 978-90-76016-24-5. Retrieved from www.plaxis.com.
10. Smith, I.M., Griffiths, D.V., & Margetts, L. (2014). Programming the finite element method (5th ed.). Chichester: John Wiley & Sons Ltd. Retrieved from https://books.google.dz/books?id=ZbtiAAAAQBAJ&printsec=frontcover&hl=fr.
11. Barla, G. (2016). Full-face excavation of large tunnels in difficult conditions. Journal of Rock Mechanics and Geotechnical Engineering, 8, 294-303. https://doi.org/10.1016/j.jrmge.2015.12.003.
12. Janin, J.-P. (2012). Tunnels en milieu urbain: Prvisions des tassements avec prise en compte des effets des pr-soutnements (renforcement du front de taille et vote-parapluie). INSA de Lyon, France. Retrieved from http://theses.insa-lyon.fr/publication/2012ISAL0038/these.pdf.
13. Elmanan, A.M. (2016). Elementary and Finite Element Methods for Analysis of Closed Face Tunnels (Unpublished masters thesis). University of Khartoum Suden. Retrieved from http://onlinejournals.uofk.edu/index.php/JBRR/article/view/1463/1476.
Newer news items:
- Institutional and socio-economic factors of the educational trend in Ukraine in the context of European integration - 05/03/2021 00:36
- Identification of globalization threats to the economic sovereignty of countries with transition economies - 05/03/2021 00:36
- Company business process optimization as an imperative of its economic security - 05/03/2021 00:36
- Investigation of the possibility of reducing errors in determining the coordinates of objects indoors by multi-frequency method - 05/03/2021 00:36
- Financing of environmental programs for industrial waste management in times of crisis - 05/03/2021 00:36
- Providing the environmental safety by increasing the efficiency of firefighting in unsheltered timber warehouses - 05/03/2021 00:36
- Improvement of the membrane-free electrolysis process of hydrogen and oxygen production - 05/03/2021 00:36
- Mathematical model for forecasting the process of electric power generation by photoelectric stations - 05/03/2021 00:36
- Method for optimization of switching frequency in frequency converters - 05/03/2021 00:36
- Experimental study on an overhead crane passing a rail track joint - 05/03/2021 00:36
Older news items:
- Dynamic loads in self-aligning gear transmissions of heavy loaded machines - 05/03/2021 00:36
- A deformation mode in a cold rolling condition to provide the necessary texture of the Ti-3Al-2.5V alloy - 05/03/2021 00:36
- Kinetics of quartz sand and its mixtures drying by microwave radiation - 05/03/2021 00:36
- Direct method of studying heat exchange in multilayered bodies of basic geometric forms with imperfect heat contact - 05/03/2021 00:36
- Mathematical modeling of the surface roughness of the grinding wheel during straightening - 05/03/2021 00:36
- The method for determining the parameters of the diagrams of a truncated-wedge destruction of cylindrical samples of rocks - 05/03/2021 00:36
- Influence of technological process parameters on qualitative characteristics of coal thermolysis products - 05/03/2021 00:36
- Analytical studies on constrained particle settling velocity in a water suspension of fly ash from thermal power plants - 05/03/2021 00:36
- Increasing the efficiency of water shut-off in oil wells using sodium silicate - 05/03/2021 00:36
- Improvement of sub-level caving mining methods during high-grade iron ore mining - 05/03/2021 00:36