Адсорбція фенолу активованим вугіллям з оливкових вичавків: моделювання та оптимізація
- Деталі
- Категорія: Зміст №2 2023
- Останнє оновлення: 03 травня 2023
- Опубліковано: 30 листопада -0001
- Перегляди: 2282
Authors:
Ф.Аіт Мерзег*, orcid.org/0000-0003-1370-5977, Дослідницький відділ із питань аналізу й технологічного розвитку навколишнього середовища, м. Алжир, Алжир; Науково-технічний дослідницький центр фізико-хімічного аналізу, м. Бу-Ісмаїл, Алжир; Лабораторія технології матеріалів і технологічних процесів, Університет Беджая, м. Беджая, Алжир, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
Н.Баіт, orcid.org/0000-0003-1466-8637, Дослідницький відділ із питань аналізу й технологічного розвитку навколишнього середовища, м. Алжир, Алжир; Науково-технічний дослідницький центр фізико-хімічного аналізу, м. Бу-Ісмаїл, Алжир
T.Мокрані , orcid.org/0000-0002-1109-9515, Кафедра цивільного та хімічного машинобудування, Університет Південної Африки, м. Йоханнесбург, Південно-Африканська Республіка
І.Аккарі, orcid.org/0000-0003-1705-3910, Лабораторія технології матеріалів і технологічних процесів, Університет Беджая, м. Беджая, Алжир
Р.Ладжі, orcid.org/0000-0002-7610-5234, Дослідницький відділ із питань аналізу й технологічного розвитку навколишнього середовища, м. Алжир, Алжир; Науково-технічний дослідницький центр фізико-хімічного аналізу, м. Бу-Ісмаїл, Алжир
K.Башарі, orcid.org/0000-0003-0624-8480, Науково-технічний дослідницький центр фізико-хімічного аналізу, м. Бу-Ісмаїл, Алжир
* Автор-кореспондент e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2023, (2): 125 - 133
https://doi.org/10.33271/nvngu/2023-2/125
Abstract:
Мета. Очищення води, забрудненої фенолом, за допомогою процесу адсорбції в реакторі періодичної дії з валоризацією оливкових вичавків для приготування активованого вугілля задля подальшого використання як адсорбент.
Методика. У цій роботі вивчався вплив чотирьох основних параметрів на результат адсорбції при очищенні забрудненої води за допомогою цього процесу, а саме: маси активованого вугілля, часу контакту, початкової концентрації фенолу та швидкості перемішування. Крім того, процес був оптимізований за допомогою факторного аналізу із застосуванням методики поверхні відгуку програмного забезпечення MINITAB.
Результати. Адсорбція фенолу на активованому вугіллі з оливкових вичавків дозволяє досягти ефективності адсорбції 91 % за таких оптимальних умов: маса адсорбенту – 0,48 г, час контакту – 110,80 хв, концентрація фенолу – 100,98 мг/л та швидкість перемішування – 462,89 об/хв. Час контакту й маса адсорбенту позитивно впливають на ефективність видалення фенолу. Основні результати впливу показують, що всі чотири досліджені фактори значно вплинули на видалення фенолу активованим вугіллям з оливкових вичавків зі ступенем достовірності 95 %.
Наукова новизна. Експериментальні дані з адсорбції фенолу активованим вугіллям з оливкових вичавків досліджували шляхом побудови поліноміальної моделі другого ступеня. Ця модель перевіряється статистичним методом із використанням дисперсійного аналізу (ANOVA). З метою визначення оптимальних параметрів для максимального вилучення фенолу була виконана чисельна оптимізація за допомогою функції бажаності.
Практична значимість. Щоб висвітлити процес очищення води, забрудненої фенолом, ми вибрали процеси, які вважаємо найбільш підходящими, а саме адсорбцію з відновленням відходів, таких як адсорбент, що отримують шляхом фізичної та хімічної активації оливкових вичавків. Повний факторний аналіз, що застосовується, дозволяє показати індивідуально вплив кожного параметра та їх залежності, а також швидко знайти оптимальні експериментальні умови, які призводять до реалізації цього процесу.
Ключові слова: адсорбція, фенол, оливкові вичавки, активоване вугілля
References.
1. Salehi, M. (2022). Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis. Environment International, 158, 106936. https://doi.org/10.1016/j.envint.2021.106936.
2. Mishra, B., Kumar, P., Saraswat, C., Chakraborty, S., & Gautam, A. (2021). Water Security in a Changing Environment: Concept, Challenges and Solutions. Water, 13, 490. https://doi.org/10.3390/w13040490.
3. Vollmer, D., & Harrison, I. J. (2021). H2O CO2: framing and responding to the global water crisis. Environmental Research Letters, 16, 011005. https://doi.org/10.1088/1748-9326/abd6aa.
4. Tang, W., Pei, Y., Zheng, H., Zhao, Y., Shu, L., & Zhang, H. (2022). Twenty years of China’s water pollution control: Experiences and challenges. Chemosphere, 295, 133875. https://doi.org/10.1016/j.chemosphere.2022.133875.
5. Zhang, H., Li, H., Gao, D., & Yu, H. (2022). Source identification of surface water pollution using multivariate statistics combined with physicochemical and socioeconomic parameters. Science of The Total Environment, 806, 151274. https://doi.org/10.1016/j.scitotenv.2021.151274.
6. Acosta, C.A., Pasquali, C.E.L., Paniagua, G., Garcinuño, R.M., & Hernando, P.F. (2018) . Evaluation of total phenol pollution in water of San Martin Canal from Santiago del Estero, Argentina. Environmental Pollution, 236, 265-272. https://doi.org/10.1016/j.envpol.2018.01.062.
7. Gufe, C., Sutthibutpong, T., Muhammad, A., Ngenyoung, A., Rattanarojpong, T., & Khunrae, P. (2021) . Role of F124 in the inhibition of Bacillus firmus K-1 Xyn11A by monomeric aromatic phenolic compounds. Biocatalysis and Agricultural Biotechnology, 36, 102147. https://doi.org/10.1016/j.bcab.2021.102147.
8. Panigrahy, N., Priyadarshini, A., Sahoo, M.M., Verma, A.K., Daverey, A., & Sahoo, N.K. (2022). A comprehensive review on eco-toxicity and biodegradation of phenolics: Recent progress and future outlook. Environmental Technology & Innovation, 27, 102423. https://doi.org/10.1016/j.eti.2022.102423.
9. Rangabhashiyam, S., Anu, N., & Selvaraju, N. (2013). Sequestration of dye from textile industry wastewater using agricultural waste products as adsorbents. Journal of Environmental Chemical Engineering, 1, 629-641. https://doi.org/10.1016/j.jece.2013.07.014.
10. Ao, J., Zhang, Q., Tang, W., Yuan, T., & Zhang, J. (2021) . A simple, rapid and sensitive method for the simultaneous determination of eighteen environmental phenols in human urine. Chemosphere, 278, 130494. https://doi.org/10.1016/j.chemosphere.2021.130494.
11. Akkari, I., Graba, Z., Bezzi, N., Kaci, M.M., Ait Merzeg, F., Bait, N., …, & Benguerba, Y. (2022). Effective removal of cationic dye on activated carbon made from cactus fruit peels: a combined experimental and theoretical study. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-22402-4.
12. Akkari, I., Graba, Z., Bezzi, N., Ait Merzeg, F., Bait, N., Ferhati, A., & Kaci, M.M. (2022). Biosorption of Basic Red 46 using raw cactus fruit peels: equilibrium, kinetic and thermodynamic studies. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02354-y.
13. Kong, X., Gao, H., Song, X., Deng, Y., & Zhang, Y. (2020). Adsorption of phenol on porous carbon from Toona sinensis leaves and its mechanism. Chemical Physics Letters, 739, 137046. https://doi.org/10.1016/j.cplett.2019.137046.
14. Jung, K.W., Choi, B.H., Hwang, M.J., Jeong, T.U., & Ahn, K.H. (2016). Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue. Bioresource Technology, 219, 185-195. https://doi.org/10.1016/j.biortech.2016.07.098.
15. Akkari, I., Graba, Z., Bezzi, N., Ait Merzeg, F., Bait, N., & Ferhati, A. (2021). Raw pomegranate peel as promise efficient biosorbent for the removal of Basic Red 46 dye: equilibrium, kinetic, and thermodynamic studies. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01620-9.
16. Raupp, Í.N., Valério Filho, A., Arim, A.L., Muniz, A.R.C., & da Rosa, G.S. (2021). Development and Characterization of Activated Carbon from Olive Pomace: Experimental Design, Kinetic and Equilibrium Studies in Nimesulide Adsorption. Materials, 14, 6820. https://doi.org/10.3390/ma14226820.
17. Hegazy, A.K., Abdel-Ghani, N.T., & El-Chaghaby, G.A. (2013). Adsorption of phenol onto activated carbon from Rhazya stricta: determination of the optimal experimental parameters using factorial design. Applied Water Science, 4, 273-281. https://doi.org/10.1007/s13201-013-0143-9.
18. Kilic, M., Apaydin-Varol, E., & Pütün, A.E. (2011). Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: Equilibrium, kinetics and thermodynamics. Journal of Hazardous Materials, 189, 397-403. https://doi.org/10.1016/j.jhazmat.2011.02.051.
19. Rathinam, A., Rao, J.R., & Nair, B.U. (2011). Adsorption of phenol onto activated carbon from seaweed: Determination of the optimal experimental parameters using factorial design. Journal of the Taiwan Institute of Chemical Engineers, 42, 952-956. https://doi.org/10.1016/j.jtice.2011.04.003.
20. Abdel-Ghani, N.T., El-Chaghaby, G.A., & Helal, F.S. (2016). Preparation, characterization and phenol adsorption capacity of activated carbons from African beech wood sawdust. Global J. Environ. Sci. Manage, 2, 209-222. https://doi.org/10.7508/gjesm.2016.03.001.
Наступні статті з поточного розділу:
- Детермінанти прибутковості підприємств ІТ-галузі: приклад України - 03/05/2023 02:46
- Дефінляндизація та нова економічна політика України у повоєнний період - 03/05/2023 02:46
- Ефективність та інтернаціоналізація гірничо-металургійних груп України - 03/05/2023 02:46
- Особливості проведення оцінки результатів реалізації програм регіонального розвитку в Україні - 03/05/2023 02:46
- Економічна безпека України в умовах деструктивного впливу екзогенних детермінант - 03/05/2023 02:46
- Перспективні методи визначення втрат води зі зрошувальних систем для забезпечення продовольчої та водної безпеки України - 03/05/2023 02:46
- Вплив Індустрії 4.0 на цифрову трансформацію виробничих підприємств в Україні - 03/05/2023 02:46
- Вплив Індустрії 4.0 на стратегії виходу компаній на глобальний ринок послуг інтеграції даних - 03/05/2023 02:46
- Підвищення ефективності використання магістральної та приватної залізничної інфраструктури в умовах транспортного ринку - 03/05/2023 02:46
Попередні статті з поточного розділу:
- Теоретико-правові аспекти регулювання еколого-земельних правовідносин в умовах воєнного стану в Україні - 03/05/2023 02:46
- Соціальна відповідальність за безпеку та здоров’я працівників на роботі - 03/05/2023 02:46
- Удосконалення процесу керування професійними ризиками за матрицею Хеддона - 03/05/2023 02:46
- Підвищення екологічної ефективності димових труб скловарних печей при застосуванні теплоутилізаційних технологій - 03/05/2023 02:46
- Інвестиційний менеджмент і фінансове забезпечення реновації інфраструктури сталого середовища - 03/05/2023 02:46
- Особливості термомодернізації системи опалення військових інфраструктурних комплексів - 03/05/2023 02:46
- Прогнозування вертикальних зсувів конструкцій інженерних будівель та споруд - 03/05/2023 02:46
- Вплив конструктивних особливостей робочого колеса на комбінований робочий процес вільновихрового насоса - 03/05/2023 02:46
- Ефект підвищення опору внутрішньому зсуву бетонного полотна баластного шару залізничної колії - 03/05/2023 02:46
- Контактні напруження під підошвою жорстких фундаментів глибокого закладення і ґрунтових анкерів - 03/05/2023 02:46