Підвищення ефективності водоізоляції нафтових свердловин застосуванням силікату натрію
- Деталі
- Категорія: Зміст №1 2021
- Останнє оновлення: 10 березня 2021
- Опубліковано: 30 листопада -0001
- Перегляди: 1673
Authors:
Д. Ж. АбделіD.Zh.Abdeli, orcid.org/0000-0002-1753-4952, Satbayev University, м. Алмати, Республіка Казахстан, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
Х. Дейгл, orcid.org/0000-0002-6062-8321, Техаський університет в Остіні, м Остін, США, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
А. С. Искак, orcid.org/0000-0002-2532-2642, Satbayev University, м. Алмати, Республіка Казахстан, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
А. С. Даулетов, orcid.org/0000-0001-5777-4750, АТ Ембамунайгаз, м. Атирау, Республіка Казахстан, е-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
К. С. Нурбекова, orcid.org/0000-0002-2576-5195, Університет Алмати, м. Алмати, Республіка Казахстан, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2021, (1): 026 - 031
https://doi.org/10.33271/nvngu/2021-1/026
Abstract:
Мета. Обґрунтування технології створення водоізолюючої зони нижче нафтового пласта та встановлення раціонального складу гелеутворюючої композиції на основі рідкого скла для зниження обводнення видобувних свердловин.
Методика. Мета роботи досягається проведенням теоретичних і експериментальних досліджень технологічних процесів водоізоляції нафтового пласта й виявленням закономірностей гелеутворення композиції з рідкого скла та гідратації мікроцементного розчину із добавкою, що розширюється та сповільнювачем реакції у пластових умовах на натурних моделях. До складу гелеутворюючої композиції були включені: рідке скло (водний розчин силікату натрію Na2SiO3) і сшиватель солі алюмінію AS-1, а до складу тампонажного мікроцементного розчину – мікропартланд цемент і рідке скло із добавкою оксиду кальцію, що розширюється та сповільнювач реакції GL-1. Критеріями оцінки створення надійної водоізолюючої зони нафтового пласта є збереження рухливості водного розчину гелеутворюючої композиції у процесі переміщення її від гирла до вибою свердловини та забезпечення низької проникності утвореної водоізолюючої зони нафтового пласта, а також достатня міцність безусадного мікроцементного каменю в заколонному просторі свердловини.
Результати. Запропонована нова технологія водоізоляції свердловин шляхом створення водоізолюючої зони й застосування гелеутворюючої композиції на основі рідкого скла, що забезпечує значне зниження обводнення свердловин при видобутку нафти. Виявлено, що перфорація експлуатаційної колони нижче нафтового пласта на рівні водонасиченої зони і послідовне закачування через утворені перфоровані канали послідовно буферної рідини – прісної води, водного розчину гелеутворюючої композиції на основі рідкого скла запобігає припливу води до вибою свердловин. Експериментально встановлено, що, при часі гелеутворення 2 години і прийнятих значеннях факторів, в’язкість гелю знаходиться в діапазоні 1,2–2,9 Па с, а щільність – у межах 1080–1109 кг/м3. Ці значення в’язкості гелю забезпечують транспортування його з гирла до вибою свердловини з найменшим опором руху. Зі збільшенням часу гелеутворення в’язкість істотно збільшується і через 3 доби в’язкість гелю досягає діапазону 3,4–6,7 Па с. Вказані значення в’язкості утвореного гелю набагато більші, ніж значення в’язкості нафти на родовищах. Тому запропонована гелеутворююча композиція забезпечує надійну гідроізоляційну зону нижче нафтового пласта й запобігає припливу підошовної пластової води до вибоїв свердловин.
Наукова новизна. Запропонована нова технологія водоізоляції свердловин шляхом створення надійної водоізолюючої зони й застосування гелеутворюючої композиції та тампонажного матеріалу на основі рідкого скла й мікроцементу, що забезпечує значне зниження обводнення свердловин при видобутку нафти.
Практична значимість. Розроблена методика дослідження технологічних процесів водоізоляції нафтового пласта та встановлено раціональний склад гелеутворюючої композиції й мікроцементного розчину із добавкою, що розширюється і сповільнювачем реакції у пластових умовах на натурних моделях. Застосування на нафтових родовищах результатів досліджень дозволяє знизити обводненість видобувних свердловин до 0–10 % проти існуючих значень 70–90 % і підвищити дебіт видобувних свердловин на 20–30 %.
Ключові слова: нафтова свердловина, пластова вода, водоізоляція, рідке скло, мікроцемент
References.
1. Pham, L. T., & Hatzignatiou, D. G. (2016). Rheological evaluation of a sodium silicate gel system for water management in mature, naturally fractured oilfields. Journal of Petroleum Science and Engineering, 138, 218-233. https://doi.org/10.1016/j.petrol.2015.11.039.
2. Afeez O. Gbadamosi, Radzuan Junin, Muhammad A. Manan, Augustine Agi, & Adeyinka S. Yusuff (2019). An overview of chemical enhanced oil recovery: recent advances and prospects. International Nano Letters, 9, 171-202. https://doi.org/10.1007/s40089-019-0272-8.
3. Mallakpour, S., & Khadem, E. (2015). Recent development in the synthesis of polymer nanocomposites based on nano-alumina. Progress in Polymer Science, 51, 74-93. https://doi.org/10.1016/j.progpolymsci.2015 .07.004.
4. Guo, H., Li, Y., Wang, F., Yu, Z., Chen, Z., Wang, Y., & Gao, X. (2017). ASP flooding theory and practice progress in China. Journal of Chemistry, 2017. https://doi.org/10.1155/2017/8509563.
5. Aitkulov, A., Luo, H., Lu, J., & Mohanty, K. K. (2017). Alkali–cosolvent–polymer flooding for viscous oil recovery: 2D evaluation. Energy Fuels, 31, 7015-7025 https://doi.org/10.1021/acs.energyfuels.7b00790.
6. Barati-Harooni, A., Najafi-Marghmaleki, A., Tatar, A., & Mohammadi, A. (2016). Experimental and modeling studies on adsorption of a nonionic surfactant on sandstone minerals in enhanced oil recovery process with surfactant flooding. Journal of Molecular Liquids. https://doi.org/10.1016/j.molliq.2016.04.090.
7. Lakatos, I. J., Lakatos-Szabo, J., Szentes, G., Vago, A., Karaffa, Zs., & Bodi, T. (2015). New Alternatives in Conformance Control: Nanosilica and Liquid Polymer Aided Silicate Technology. Paper SPE-174225-MS, SPE European Formation Damage Conference and Exhibition. Society of Petroleum Engineers, Budapest, Hungary. https://doi.org/10.2118/174225-MS.
8. Askarinezhad, R., Hatzignatiou, D. G., & Stavland, A. (2017). Disproportionate Permeability Reduction of Water-Soluble Silicate Gelants: Importance of Formation Wettability. SPE Production and Operation, 32(03), 362-373. https://doi.org/10.2118/ 179589-PA.
9. Hatzignatiou, D. G., & Giske, N. H. (2016). Water-Soluble Sodium Silicate Gelants for Water Management in Naturally Fractured Carbonate Reservoirs. Paper SPE-180128-MS, SPE Europec featured at 78 th EAGE Conference and Exhibition, 479, (pp. 72-81), 30 May-2 June, Vienna, Austria. https://doi.org/10.2118/180128-MS.
10. Yue Qiu, Mingzhen Wei, Jaming Geng, & Fengxiang Wu (2016). Successful Field Application of Microgel Treatment in High Temperature High Salinity Reservoir in China. SPE-179693-MS SPE Improved Oil Recovery Conference, 11-13 April, Tulsa, Oklahoma, USA. https://doi.org/10.2118/179693-MS.
11. Hatzignatiou, D. G., Askarinezhad, R., Giske, N. H., & Stavland, A. (2015). Laboratory Testing of Environmentally Friendly Chemicals for Water Management. Paper SPE 173853-PA, Production & Operations Journal. https://doi.org/10.2118/173853-PA.
12. Lakatos, I. J., Lakatos-Szabo, J., & Szentes, G. (2018). Revival of Green Conformance and IOR/EOR Technologies: Nanosilica Aided Silicate Systems – A Review. SPE-189534-MS. https://doi.org/10.2118/189534-MS.
13. Tariq K. Khamees, Ralph E. Flori, & Sherif M. Fakher (2018). Numerical Modeling of Water-Soluble Sodium Silicate Gel System for Fluid Diversion and Flow-Zone Isolation in Highly Heterogeneous Reservoirs. SPE Trinidad and Tobago Section Energy Resources Conference, 25-26 June, Port of Spain, Trinidad and Tobago. https://doi.org/10.2118/191200-MS.
14. Abdeli, D. Zh., Yskak, A. S., Rahmetov, O. Zh., Lei, T., & Van, Ts. (2019). Establishing rational parameters of the sealing process annular space in the bottom-hole zone of oil wells. Proceedings of the Satbayev readings “Innovative technologies are the key to the successful solution of fundamental and applied problems in the ore and oil and gas sectors of the economy of the Republic of Kazakhstan”, 1, 360-365.
Наступні статті з поточного розділу:
- Експериментальні дослідження руху мостового крана через стик рейкової колії - 10/03/2021 00:00
- Аналіз стійкості вибою неглибоких тунелів з використанням методу скінчених елементів - 10/03/2021 00:00
- Динамічні навантаження в самовстановлювальних зубчастих передачах високонавантажених машин - 10/03/2021 00:00
- Режим деформації в стані холодної прокатки труб для забезпечення необхідної текстури сплаву Ti-3Al-2.5V - 10/03/2021 00:00
- Кінетика сушіння кварцового піску та його сумішей мікрохвильовим випромінюванням - 10/03/2021 00:00
- Прямий метод дослідження теплообміну в багатошарових тілах основних геометричних форм при неідеальному тепловому контакті - 10/03/2021 00:00
- Математичне моделювання шорсткості поверхні шліфувального круга при правці - 10/03/2021 00:00
- Метод визначення параметрів діаграм усічено-клинового руйнування циліндричних зразків гірських порід - 10/03/2021 00:00
- Вплив параметрів технологічних процесів на якісні характеристики продуктів термолізу вугілля - 10/03/2021 00:00
- Аналітичні дослідження швидкості стисненого осадження частинок у водній суспензії золи виносу ТЕС - 10/03/2021 00:00
Попередні статті з поточного розділу:
- Удосконалення систем підповерхового обвалення при розробці багатих залізних руд - 10/03/2021 00:00
- Геологічні й гірничотехнічні особливості реалізації принципів гідромеханічного буріння - 10/03/2021 00:00
- Розчленування рудівських шарів на основі статистичних методів за геолого-геофізичними даними - 10/03/2021 00:00