Вплив дисперсно-зміцнювальної добавки дибориду хрому на структуру твердосплавних матриць бурових долот PDC
- Деталі
- Категорія: Зміст №4 2024
- Останнє оновлення: 28 серпня 2024
- Опубліковано: 30 листопада -0001
- Перегляди: 1112
Authors:
Б.Т.Ратов*, orcid.org/0000-0003-4707-3322, НАТ «Казахський національний дослідницький технічний університет імені К.І.Сатпаєва», м. Алмати, Республіка Казахстан, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
В.A.Мечник, orcid.org/0000-0003-2686-3712, Інститут надтвердих матеріалів імені В.М.Бакуля НАН України, м. Київ, Україна, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
В.Л.Хоменко, orcid.org/0000-0002-3607-5106, Національний технічний університет «Дніпровська політехніка», м. Дніпро, Україна, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
А.О.Ігнатов, orcid.org/0000-0002-7653-125X, Національний технічний університет «Дніпровська політехніка», м. Дніпро, Україна, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
А.Б.Калжанова, orcid.org/0000-0002-1885-0367, Каспійський державний університет технологій та інжинірингу імені Ш. Єсенова, м. Актау, Республіка Казахстан, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
* Автор-кореспондент e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2024, (4): 027 - 034
https://doi.org/10.33271/nvngu/2024-4/027
Abstract:
Мета. Розробка високоефективних композиційних алмазовмісних матеріалів на основі WC-Co-матриць з добавками CrB2 із підвищеними механічними та експлуатаційними властивостями для створення матриць породоруйнівного інструменту для буріння нафтових і газових свердловин.
Методика. Поставлені завдання вирішувалися комплексним методом дослідження, що включає огляд і узагальнення літературних джерел; проведення аналітичних досліджень існуючих композиційних алмазовмісних матеріалів; методи скануючої електронної мікроскопії (СЕМ); методи рентгенофазного аналізу; облік експериментальних даних методом Рітвельда, розробленим для характеристики кристалічних матеріалів методом порошкової рентгенівської дифракції; методика Вільямсона-Холла.
Результати. Встановлено, що структура вихідного композиту 94 % WC-6 % Co складається з фаз WC із параметрами кристалічної решітки а = 0,2906, з = 0,2837 нм і графіту з параметрами решітки а = 0,2461, з = 0,6708 нм. Додавання дибориду хрому до складу зразка 94 %WC‒6 % Co призводить до розпаду фази CrB2 і утворення кінцевого фазового складу: WC + B2CoW2 + Cграфіт + твердий розчин вольфраму й вуглецю в кобальті.
Наукова новизна. Уперше показано, що якщо для системи WC-6Co характерна незначна розчинність компонентів один в одному, то в системі WC-Co-CrB2 має місце суттєве взаємне розчинення компонентів, що призводить до зменшення їх розмірів у процесі спікання. При досягненні порогової концентрації (~4 %) дибориду хрому у складі шихти, у структурі композиту починають формуватися фази гексагональної групи WC і нові фази орторомбічної групи B2CoW2 та включень аморфного вуглецю.
Практична значимість. Розроблено високоефективний композиційний алмазовмісний матеріал на основі WC-Co-матриць з добавками CrB2 із підвищеними механічними (твердість, тріщиностійкість, міцність на стискання й вигин) та експлуатаційними (зносостійкість, продуктивність) властивостями для створення високоефективного породоруйнуючого інструменту для буріння.
Ключові слова: породоруйнівний інструмент, алмаз, композит, карбід вольфраму, кобальт, диборид хрому, гірська порода
References.
1. Sudakov, A., Chudyk, I., Sudakova, D., & Dziubyk, L. (2019). Innovative technology for insulating the borehole absorbing horizons with thermoplastic materials. E3S Web of Conferences, 123, 1-10. https://doi.org/10.1051/e3sconf/201912301033.
2. Wheeler, D. (2018). Applications of diamond to improve tribological performance in the oil and Gas Industry. Lubricants, 6(3), 84. https://doi.org/10.3390/lubricants6030084.
3. Ratov, B., Mechnik, V., Bondarenko, N., Kolodnitsky, V., Khomenko, V., Sundetova, P., …, & Makyzhanova, A. (2024). Increasing the durability of an impregnated diamond core bit for drilling hard rocks. SOCAR Proceedings, 1, 37-46. https://doi.org/10.5510/OGP20240100936.
4. Ratov, B. T., Mechnik, V. A., Rucki, M., Gevorkyan, E. S., Bondarenko, N. A., Kolodnitskyi, V. M., …, & Korostyshevskyi, D. L. (2023). Cdiamond–(WC–CO)–ZRO2 composite materials with improved mechanical and adhesive properties. Journal of Superhard Materials, 45(2), 103-117. https://doi.org/10.3103/s1063457623020107.
5. Dreus, A., Sudakov, A. К., Lysenko, K., & Кozhevnikov, A. A. (2016). Investigation of heating of the drilling bits and definition of the energy efficient drilling modes. Eastern-European Journal of Enterprise Technologies. Technologies, 3(7(81)), 41-46. https://doi.org/10.15587/1729-4061.2016.71995.
6. Ratov, B., Rucki, M., Fedorov, B., Hevorkian, E., Siemiatkowski, Z., Muratova, S., …, & Bondarenko, N. (2023). Calculations on enhancement of polycrystalline diamond bits through addition of superhard diamond-reinforced elements. Machines, 11(4), 453. https://doi.org/10.3390/machines11040453.
7. Koroviaka, Y., Pinka, J., Tymchenko, S., Rastsvietaiev, V., Astakhov, V., & Dmytruk, O. (2020). Elaborating a scheme for mine methane capturing while developing coal gas seams. Mining of Mineral Deposits, 14(3), 21-27. https://doi.org/10.33271/mining14.03.021.
8. Biletskiy, M. T., Ratov, B. T., Khomenko, V. L., Borash, B. R., & Borash, A. R. (2022). Increasing the Mangystau peninsula underground water reserves utilization coefficient by establishing the most effective method of drilling water supply wells. News of the National Academy of Sciences of the Republic of Kazakhstan, 5(455), 51-62. https://doi.org/10.32014/2518-170X.217.
9. Ratov, B., Borash, A., Biletskiy, M., Khomenko, V., Koroviaka, Y., Gusmanova, A., …, & Matуash, O. (2023). Identifying the operating features of a device for creating implosion impact on the water bearing formation. Eastern-European Journal of Enterprise Technologies, 5(1(125), 35-44. https://doi.org/10.15587/1729-4061.2023.287447.
10. Maksymovych, O., Lazorko, A., Sudakov, A., Hnatiuk, O., Mazurak, A., & Dmitriiev, O. (2021). Stress concentration in bounded compositeplates with carbon reinforcement. Actual Challenges in Materials Science and Processing Technologies II. Advanced Materials Research, 1045, 147-156. https://doi.org/10.4028/www.scientific.net/MSF.1045.147.
11. Piri, M., Hashemolhosseini, H., Mikaeil, R., Ataei, M., & Baghbanan, A. (2020). Investigation of wear resistance of drill bits with WC, Diamond-DLC, and TiAlSi coatings with respect to mechanical properties of rock. International Journal of Refractory Metals and Hard Materials, 87, 105113. https://doi.org/10.1016/j.ijrmhm.2019.105113.
12. Sun, W., Gao, H., Tan, S., Wang, Z., & Duan, L. (2021). Wear detection of WC-Cu based impregnated Diamond Bit Matrix based on SEM image and deep learning. International Journal of Refractory Metals and Hard Materials, 98, 105530. https://doi.org/10.1016/j.ijrmhm.2021.105530.
13. Wang, S., Xiao, B., Xiao, H., & Meng, X. (2022). Interface microstructure and bonding performance of brazed w-coated diamonds using Ni–Cr alloy. Ceramics International, 48(7), 9864-9872. https://doi.org/10.1016/j.ceramint.2021.12.189.
14. Bulut, B., Gunduz, O., Baydogan, M., & Kayali, E. S. (2021). Determination of matrix composition for diamond cutting tools according to the hardness and abrasivity properties of rocks to be cut. International Journal of Refractory Metals and Hard Materials, 95, 105466. https://doi.org/10.1016/j.ijrmhm.2020.105466.
15. Rong, L., Zhang, S., Wu, D., Wu, J., Kong, X., & He, T. (2023). Optimization of functionally graded polycrystalline diamond compact based on residual stress: Numerical Simulation and Experimental Verification. International Journal of Refractory Metals and Hard Materials, 117, 106414. https://doi.org/10.1016/j.ijrmhm.2023.106414.
16. Wang, J., Gao, K., Li, P., & Zhao, Y. (2023). Research on low-carbon, energy-saving sintering process with uniform temperature for drill bits. Energies, 16(17), 6205. https://doi.org/10.3390/en16176205.
17. Ratov, B. T., Bondarenko, M. O., Mechnik, V. A., Strelchuk, V. V., Prikhna, T. A., Kolodnitskyi, V. M., …, & Borash, A. R. (2021). Structure and properties of WC–CO composites with different CrB2 concentrations, sintered by Vacuum Hot Pressing, for drill bits. Journal of Superhard Materials, 43(5), 344-354. https://doi.org/10.3103/s1063457621050051.
18. Kolodnitskyi, V. М., & Bagirov, O. E. (2017). On the structure formation of diamond-containing composites used in drilling and stone-working tools (A review). Journal of Superhard Materials, 39(1), 1-17. https://doi.org/10.3103/s1063457617010014.
19. Vynohradova, O. P., Zakora, A. P., Shul’zhenko, A. A., Gargin, V. G., Sokolov, A. N., Efrosinin, D. V., & Zakora, I. A. (2022). Comparative evaluation of the performance of drill bits with a diamond-containing matrix and inserts made of diamond-containing composites. Journal of Superhard Materials, 44(1), 57-61. https://doi.org/10.3103/s1063457622010099.
20. Agudelo-Morimitsu, L. C., De La Roche, J., Escobar, D., Ospina, R., & Restrepo-Parra, E. (2013). Substrate heating and post-annealing effect on tungsten/tungsten carbide bilayers grown by non-reactive DC magnetron sputtering. Ceramics International, 39(7), 7355-7365. https://doi.org/10.1016/j.ceramint.2013.02.075.
21. Maystrenko, A. L., Bondarenko, M. O., Antonyuk, V. S., Petasyuk, G. A., Vinogradova, O. P., Vasylchuk, O. S., …, & Oleinyk, N. O. (2023). Wear intensity of the functional components made of diamond-containing composite materials during the operation of tools in the process of Rock Destruction. Journal of Superhard Materials, 45(3), 208-216. https://doi.org/10.3103/s1063457623030164.
22. Novikov, V. V., Novikova, O. O., & Bolotov, A. N. (2021). Formation of diamond-containing ceramic abrasive material by microarc oxidation. Proceedings International Conference “Problems of Applied Mechanics”. https://doi.org/10.1063/5.0047434.
23. Debus, J., Schindler, J. J., Waldkirch, P., Goeke, S., Brümmer, A., Biermann, D., & Bayer, M. (2016). Indication of worn WC/C surface locations of a dry-running twin-screw rotor by the oxygen incorporation in tungsten-related Raman modes. Applied Physics Letters, 109(17). https://doi.org/10.1063/1.4966145.
24. Lisovsky, A. F., Bondarenko, N. A., & Davidenko, S. A. (2016). Structure and properties of the diamond–WC–6Co composite doped by 1.5 wt % of CrSi2. Journal of Superhard Materials, 38(6), 382-392. https://doi.org/10.3103/s1063457616060022.
25. Novikov, N. V., Maystrenko, A. L., & Prokopiv, N. V. (2012). The formation of diamond-hardmetal granules for the use in rock cutting tools. Journal of Superhard Materials, 34(1), 63-70. https://doi.org/10.3103/s106345761201008x.
26. Song, D., Ren, Z., Yang, Y., Chen, Y., Nie, G., Tan, L., …, & Zuo, L. (2022). Drilling performance analysis of impregnated micro bit. Mechanical Sciences, 13(2), 867-875. https://doi.org/10.5194/ms-13-867-2022.
27. He, M., Li, N., Zhu, J., & Chen, Y. (2020). Advanced prediction for field strength parameters of rock using drilling operational data from impregnated diamond bit. Journal of Petroleum Science and Engineering, 187, 106847-106847. https://doi.org/10.1016/j.petrol.2019.106847.
28. Dash, T., & Nayak, B. B. (2013). Preparation of WC–W2C Composites by Arc Plasma Melting and their characterisations. Ceramics International, 39(3), 3279-3292. https://doi.org/10.1016/j.ceramint.2012.10.016.
29. Yang, Q., Yu, S., Zheng, C., Liao, J., Li, J., Chen, L., …, & Chen, H. (2020). Effect of carbon content on microstructure and mechanical properties of WC-10Co cemented carbides with plate-like WC grain. Ceramics International, 46(2), 1824-1829. https://doi.org/10.1016/j.ceramint.2019.09.158.
30. Pero, R., Maizza, G., Montanari, R., & Ohmura, T. (2020). Nano-Indentation Properties of Tungsten Carbide-Cobalt Composites as a Function of Tungsten Carbide Crystal Orientation. Materials, 13(9), 2137. https://doi.org/10.3390/ma13092137.
Наступні статті з поточного розділу:
- Вплив забруднення нафтопродуктами на екологічний стан ґрунту на території поблизу аеропорту - 28/08/2024 03:19
- Особливості оцінки професійних ризиків за шкідливих умов праці - 28/08/2024 03:19
- Оцінка токсичності відходів виробництва покинутої цинк-свинцеворудної (Zn-Pb) шахти для навколишнього середовища - 28/08/2024 03:19
- Застосування сучасного математичного апарату для визначення динамічних властивостей транспортних засобів - 28/08/2024 03:19
- Аналіз міцності вагону моделі 918 при нетипових навантаженнях сипучим вантажем - 28/08/2024 03:19
- Обґрунтування критерія оптимального керування процесом самоподрібнення руд у барабанних млинах - 28/08/2024 03:19
- Комбінована обробка випалюванням і вилуговуванням для зниження вмісту фосфору, алюмінію та кремнію в оолітовій залізній руді - 28/08/2024 03:19
- Підвищення нафтовіддачі покладів підтриманням раціонального пластового тиску - 28/08/2024 03:19
- Упровадження математичної складової в розробці пристрою оперативного контролю навантаження автосамоскиду - 28/08/2024 03:19
- Оцінка ступеня забруднення відростків газопроводу при дегазації виробленого простору - 28/08/2024 03:19