Аналіз напруження на стрічці конвеєра (модель Maxwell-element)

Рейтинг користувача:  / 0
ГіршийКращий 

Authors:


О. М. Пiгнастий, orcid.org/0000-0002-5424-9843, Національний технічний університет «Харківський політехнічний інститут», м. Харків, Україна, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.

SC. М. Чернявська, orcid.org/0000-0002-9438-6965, Національний технічний університет «Харківський політехнічний інститут», м. Харків, Україна, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.


повний текст / full article



Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2021, (4): 074 - 081

https://doi.org/10.33271/nvngu/2021-4/074



Abstract:



Мета.
Для конвеєрної стрічки, матеріал якої відповідає Maxwell моделі пружного елемента, виконати аналіз причин виникнення поздовжніх динамічних напружень і дослідити особливості поширення динамічних напружень уздовж маршруту транспортування матеріалу.


Методика.
Для розрахунку величини статичних і динамічних напружень, що виникають у конвеєрній стрічці, використано апарат математичної фізики.



Результати.
Записане хвильове рівняння, що визначає поширення поздовжніх коливань у конвеєрної стрічки, матеріал якої відповідає моделі Maxwell-елемента. Отримано вираз для розрахунку швидкості поширення пружних коливань уздовж конвеєрної стрічки, частоти коливань і довжини їх хвилі. Визначено характерний час релаксації збурень. Для рішення хвильового рівняння використано метод послідовного наближення. Дана оцінка характерного часу прискорення конвеєрної стрічки, за якого відсутні руйнування матеріалу конвеєрної стрічки.


Наукова новизна.
Полягає в удосконаленні PDE-мо­де­лей транспортних систем конвеєрного типу, що використовуються для проектування систем управління швидкістю руху стрічки при обмеженнях на режими управління швидкістю. Показано, що в режимах прискорення або уповільнення конвеєрної стрічки ефекти, пов’язані з виникненням і поширенням динамічних напружень уздовж конвеєрної стрічки, через характеристики матеріалу, що відповідають моделі елемента Maxwell, є незначними.


Практична значимість.
Полягає в тому, що отримані результати дозволяють визначити обмеження на режими розгону або гальмування конвеєрної стрічки, які запобігають її виходу з ладу і підвищенню зносу. Це відкриває перспективи для проектування ефективних систем управління параметрами конвеєрної стрічки, нерівномірно завантаженої матеріалом уздовж транспортного маршруту.


Ключові слова:
конвеєр, розподілена система, регулювання швидкості стрічки, конвеєр, PDE-модель, Maxwell element, Hookean element

References.


1. Siemens (2021). SIMINE for conveyors. Retrieved from www.siemens.com/mining.

2. Conveyor Dynamics (2020). Curragh Project. Retrieved from http://conveyordynamics.com/index.php/project/curragh/.

3. Mathaba, T., & Xia, X. (2015). A parametric energy model for energy management of long belt conveyors. Energies, 8(12), 13590-13608. https://doi.org/10.3390/en81212375.

4. Antonia, J. (2010). Energy-saving belt conveyors installed in polish collieries. Transport Problems, 5(4), 5-14.

5. Halepoto, I., Shaikh, M., & Chowdhry, B. (2016). Design and Implementation of Intelligent Energy Efficient Conveyor System Model Based on Variable Speed Drive Control and Physical Modeling. Control and Physical Modeling. Journal of Control and Automation, 9(6), 379-388.

6. Pihnastyi, O., & Khodusov, V. (2019). The optimal control problem for output material flow on conveyor belt with input accumulating bunker. Bulletin of the South Ural State University. Ser.Mathematical Modelling, Programming & Computer Software (Bulletin SUSUMMCS), 12(2), 67-81. https://doi.org/10.14529/mmp190206.

7. Bardzinski, P., Walker, P., & Kawalec, W. (2018). Simulation of random tagged ore flow through the bunker in a belt conveying system. International Journal of Simulation Modelling, (4), 597-608. https://doi.org/10.2507/IJSIMM17(4)445.

8. Pihnastyi, O., & Khodusov, V. (2020). Development of the controlling speed algorithm of the conveyor belt based on TOU-tariffs. Proceedings of the 2 nd International Workshop on Information-Communication Technologies & Embedded Systems, ICTES 2020, Mykolaiv, Ukraine, November, (2762) 73-86. Retrieved from http://ceur-ws.org/Vol-2762/paper4.pdf.

9. Kiriia, R., & Shyrin, L. (2019). Reducing the energy consumption of the conveyor transport system of mining enterprises. International Conference Essays of Mining Science and Practice, (109). https://doi.org/10.1051/e3sconf/201910900036.

10. Marasova, D., Andrejiova, M., & Grincova, A. (2017). Creation of the project of a logistic system for transportation of minerals – case study. TEM Journal, 6(2), 205-213. https://doi.org/10.18421/TEM62-03.

11. Pihnastyi, O., & Khodusov, V. (2018). Model of a composite magistral conveyor line. IEEE International Conference on System analysis & Intelligent computing, (pp. 68-72). Kyiv, Ukraine: Kyiv Polytechnic Institute. https://doi.org/10.1109/saic.2018.8516739.

12. Yang, G. (2014). Dynamics analysis and modeling of rubber belt in large mine belt conveyors. Sensors & Transducers, 81(10), 210-218.

13. Lu, Yan, Lin, Fu-Yan, & Wang, Yu-Chao (2015). Investigation on influence of speed on rolling resistance of belt conveyor based on viscoelastic properties. Journal of Theoretical and Applied Mechanics, 45(3), 53-68. https://doi.org/10.1515/jtam-2015-0017.

14. Sakharwade, S., & Nagpal, S. (2019). Analysis of transient belt stretch for horizontal and inclined belt conveyor system. International Journal of Mathematical, Engineering and Management Sciences, 4(5), 1169-1179. https://doi.org/10.33889/IJMEMS.2019.4.5-092.

15. Kulinowski, P. (2014). Simulation method of designing and selecting tensioning systems for mining belt conveyors. Archives of Mining Sciences, 59(1), 123-138. https://doi.org/10.2478/amsc-2014-0009.

16. Pihnastyi, O., & Khodusov, V. (2020). Hydrodynamic model of transport system. East European Journal of Physics, (1), 121-136. https://doi.org/10.26565/2312-4334-2020-1-11.

17. Manjgo, M., Piric, E., Vuherer, T., & Burzic, M. (2018). Determination of mechanical properties of composite materials-the rubber conveyor belt with cartridges made of polyester and polyamide. Annals of the Faculty of Engineering Hunedoara, 16(1), 141-144.

18. Karolewski, B., & Ligocki. P. (2014). Modelling of long belt conveyors. Maintenance and Reliability, 16(2), 2.

19. Lawson, B. (2017). Overland Conveyor: Control System Re-design and Implementation. PeruMin. 1-10. Retrieved from https://www.semanticscholar.org/paper/Overland-Conveyor-%3A-Control-System-Re-design-and-Lawson/a4d3dda013402e1e5b98aa5c4547d886b84a4983.

 

Наступні статті з поточного розділу:

Попередні статті з поточного розділу:

Відвідувачі

6237477
Сьогодні
За місяць
Всього
1931
64154
6237477

Гостьова книга

Якщо у вас є питання, побажання або пропозиції, ви можете написати їх у нашій «Гостьовій книзі»

Реєстраційні дані

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Журнал зареєстровано у Міністерстві юстиції України.
Реєстраційний номер КВ № 17742-6592ПР від 27.04.2011.

Контакти

49005, м. Дніпро, пр. Д. Яворницького, 19, корп. 3, к. 24 а
Тел.: +38 (056) 746 32 79.
e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
Ви тут: Головна Архів журналу за випусками 2021 Зміст №4 2021 Аналіз напруження на стрічці конвеєра (модель Maxwell-element)