Development and research of thеrmоplаstiс methods for hardening details
Authors:
V. V. Kalchenko, Dr. Sc. (Tech.), Prof., orcid.org/0000-0002-9072-2976, Chernihiv National University of Technology, Chernihiv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
A. M. Yeroshenko, Cand. Sc. (Tech.), Assoc. Prof., orcid.org/0000-0002-1629-9516, Chernihiv National University of Technology, Chernihiv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
S. V. Boyko, Cand. Sc. (Tech.), Assoc. Prof., orcid.org/0000-0001-8341-6973, Chernihiv National University of Technology, Chernihiv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
P. L. Ignatenko, Cand. Sc. (Tech.), Assoc. Prof., orcid.org/0000-0002-0967-1631, Chernihiv National University of Technology, Chernihiv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Abstract:
Purpose. Clarification of the influence of the temperature factor on the quality of the machined surface and the calculation of the contact area of the “workpiece-indenter” depending on the design features of the tool and the machined surface, in order to use the results obtained when assigning processing modes.
Methodology. Experimental studies on the influence of the temperature factor on the hardening process were carried out at a specialized facility developed at the Department of Engineering and Woodworking Technology of CNUT (Chernihiv National University of Technology). The three-roller pneumatic device was mounted on a support of the lathe-screw machine model 1K62. Workpieces were mounted on a special mandrel in a three-jaw chuck. The spindle speed was set using an electronic tachometer; the pressure on the rollers was recorded by a pressure gauge. Before the rolling, the workpiece was kept in a laboratory electric furnace, the preheat temperature was recorded by a logometer. Since the surface quality of surface plastic deformation (SPD) treatment with heating depends on a large number of factors, a central second-order rotatable composite layout was used to obtain the multifactor model. On the basis of a priori information and the results of the previous experiments, the feed (S, mm/rev), pressure (P, H) and preheat temperature (T, °C) were taken as factors determining the process. The surface layer hardness was taken as the initial parameter.
Findings. In the study of preheating SPD, the influence of the temperature factor on the hardness of the surfaces of the workpieces was confirmed. Moreover, under different processing modes, this effect occurs in different ways. Probably, this is due to the addition of thermal energy, which is due to the deformation of the surface layer and the heat supplied from the outside. For the investigated steels it is determined that within the limits of 300‒ 450 °C under the modes used during rolling-in V = 30‒70 m/min; S = 0.2‒0.4 mm/rev; P = 300‒2000 N the temperature has a positive effect on the hardness of the rolled-in surface.
Originality. The obtained dependence of the contact area of the indenter-workpiece, depending on the geometrical parameters of the running surface and the tool can be used in selecting the shape and size of the tool, depending on the specific conditions of contact, in the design of new and improvement of existing methods and means of SPD.
Practical value. Using modern software and calculations according to the formulas above, we can predict the quality when machining curvilinear surfaces with variable radius of curvature. And since the specific pressure required for the plastic deformation process to be known depends on the contact area and the force applied to the indenter, it is possible to adjust the reinforcement process by varying the force applied to the indenter depending on the changing contact area.
References.
1. Kalchenko, V., Yeroshenko, A., & Boyko, S. (2018). Crossing axes of workpiece and tool at grinding of the circular trough with variable profile. Acta Mechanica et Automatica, 12(4), 281-285. https://doi.org/10.2478/ama-2018-0043.
2. Zhaoyang, Jin, Keyan, Li, Xintong, Wu, & Hongbiao, Dong (2015). Modelling of microstructure evolution during thermoplastic deformation of Steel by a finite element method. Materials Today: Proceedings, 2S, 460-465. https://doi.org/10.1016/j.matpr.2015.05.062.
3. Grajcar, A., Kozłowska, A., & Grzegorczyk, B. (2018). Strain hardening behavior and microstructure evolution of high-manganese steel subjected to interrupted tensile tests. Metals, 8(2), 122. https://doi.org/10.3390/met8020122.
4. Ehsan Ban, J., Matthew Franklin, Sungmin Nam, Lucas R. Smith, Hailong Wang, Rebecca G. Wells, Ovijit Chaudhuri, … & Vivek B. Shenoy (2018). Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces. Biophysical journal, 114(2), 450-461. https://doi.org/10.1016/j.bpj.2017.11.3739.
5. Liu, A.S., Wang, H., & Reich, D.H. (2016). Matrix viscoplasticity and its shielding by active mechanics in microtissue models: experiments and mathematical modeling. Scientific Reports, 6. Retrieved from https://www.nature.com/articles/srep33919.
6. Ihnatenko, P. L., & Hryshchenko, M. O. (2017). Ensuring the accuracy of the shape of parts with low rigidity of complex geometric shape at processing. Bulletin of the Engineering Academy of Ukraine, (3), 187-190.
7. Verlinden, B. (2018). Severe plastic deformation of metals MJOM Metalurgija. Journal of metallurgy, 165-182. https://doi.org/10.30544/380.
8. Kowalska, J., Ratuszek, W., Witkowska, M., Zielinrska-Lipiec, A., & Kowalski, M. (2015). Microstructure and texture evolution during cold-rolling in the Fe-23Mn-3Si-3Al alloy. Archives of Metallurgy and Materials, 60, 1789-1794.
9. Megumi Kawasaki, Han-Joo Lee, Jae-il Jang, & Terence G. Langdon (2017). Strengthening of metals through severe plastic deformation. Reviews on Advanced Materials Science, 48, 13-24.
10. Liu, F., Dan, W.J., & Zhang, W.G. (2017). The effects of stress state on the strain hardening behaviors of TWIP steel. Journal of Materials Engineering and Performance, 26, 2721-2728.
Newer news items:
- Method for evaluating technical condition of aggregates based on artificial intelligence - 10/05/2020 08:00
- Distribution of inorganic nitrogen compounds in purification of storm wastewater of the engine-building manufactory - 10/05/2020 07:59
- Development of new composite cement based on waste rocks from Djebel Onk phosphate deposit (Tebessa-Algeria) - 10/05/2020 07:56
- Modeling the process of formation of stagnation zones at hazardous production facility with application of CFD technologies - 10/05/2020 07:55
- The environmental reliability of gas-fired boiler units by applying modern heat-recovery technologies - 10/05/2020 07:13
- Effect of filtering box parameters on the protective action of gas filters - 10/05/2020 07:11
- Calculation of static and dynamic losses in power IGBT transistors by polynomial approximation of basic energy characteristicss - 10/05/2020 07:09
- Modeling the development of machine-building industry on the basis of the fuzzy sets theory - 10/05/2020 07:07
- Effect of the chirp on interactions of pure-chirped solitons - 10/05/2020 07:04
- The use of deforming broaching for enhancing the efficiency of cutter chisels - 10/05/2020 07:02
Older news items:
- Evaluation of blast wave parameters within the near-explosion zone in the process of rock breaking with borehole charges - 10/05/2020 06:58
- Method of identification of nonlinear dynamic control objects of preparatory processes before ore dressing - 10/05/2020 06:56
- Heating rate of granular inorganic materials by microwave radiation - 10/05/2020 06:54
- Synthesizing models of nonlinear dynamic objects in concentration on the basis of Volterra-Laguerre structures - 10/05/2020 06:48
- Back-analysis study on slope instability in an open pit mine (Algeria) - 10/05/2020 06:46
- Technological solutions development for mining adjacent rock mass and pit reserves taking into account geomechanical assessment of the deposit - 10/05/2020 06:45
- The influence of the moisture on the physical and mechanical properties of the sandstone (Separate Unit “Kapitalna” coal mine”, Donbas) - 10/05/2020 06:43
- Subsidence and failures within the territory of Precarpathian salt fields and the possibility of their prediction - 10/05/2020 06:40
- Contens 02 2020 - 10/05/2020 06:34