Heating rate of granular inorganic materials by microwave radiation
Authors:
L. I. Solonenko, Cand. Sc. (Tech.), orcid.org/0000-0003-2092-8044, Odessa National Polytechnic University, Odessa, Ukraine
O. P. Bilyi, orcid.org/0000-0003-1234-5404, National Metallurgical Academy of Ukraine, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
S. I. Repiakh, Dr. Sc. (Tech.), orcid.org/0000-0003-0203-4135, National Metallurgical Academy of Ukraine, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
T. V. Kimstach, orcid.org/0000-0002-8993-201X, National Metallurgical Academy of Ukraine, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
K. I. Uzlov, Dr. Sc. (Tech.), Prof., orcid.org/0000-0003-0744-9890, National Metallurgical Academy of Ukraine, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Abstract:
Purpose. Determining heating rate of granular materials of inorganic origin used for manufacturing foundry molds and rods in the field of ultra-high frequency radiation, dependence of the heating rate of materials on the magnitude of their relative dielectric permeability, as well as establishing the influence of the chemical composition and structure of inorganic materials on their relative dielectric permeability.
Methodology. Investigation was carried out on test material samples weighing 200 grams which were heated by microwave radiation with frequency of 2.45 GHz at nominal magnetron power of 700 W. Among the tested materials are: silicate block (soda), rutile, normal electro-corundum, zircon concentrate, distene-sillimanite concentrate, chamotte, quartz sand, sodium chloride, -gypsum (G4, closed), a-gypsum (G22, closed).
Findings. According to the results of changing the initial temperature of samples, the heating rate of granular materials of inorganic origin and values of their relative dielectric permeability (e) were calculated. It has been found that investigated the heating rate of industrial-grade materials is in the range from 12 (for closed gypsum grade G22) to 122 °C/min (for silicate block).
Originality. Values of dielectric permeability indicators of solid granular materials-insulators of industrial purity with a value of e 17 have been established for the first time. It has been determined that their heating rate is directly proportional to e value. Moreover, these materials’ dielectric permeability depends solely on their chemical composition and can be calculated according to the additivity rule of elementary chemical components included in their composition
Practical value. Based on the obtained data, materials appropriated for manufacturing casting model-core equipment, as well as casting molding and core mixtures working, dried and structured in the field of microwave radiation have been recommended. Using such materials will reduce energy consumption of casting parts production and increase its environmental safety.
References.
1. Gaponenkov, I. A., & Fedorova, O. A. (2018). Spheres of use of the electromagnetic field of the microwave range in the modern world. Problemy regional’noy ekologii, 1, 120-126. ISSN 1728-323X.
2. Molodtsova, M. A., & Sevastianova, Yu. V. (2017). Opportunities and prospects for the use of microwave radiation in industry (review). Lesnoy zhurnal, 2, 173-187. https://doi.org/10.17238/.
3. Gyulmaliyev, E. A., Tretiakov, V. F., & Talyshinskiy, R. M. (2016). Chemical aspects of the development of microwave technology I. Opportunities and prospects for the use of microwave radiation. Istoriya i pedagogika yestestvoznaniya, (2), 59-68. ISSN 2226-2296.
4. Korolev, A. A., Tyurina, S. B., & Trishkaneva, M. V. (2019). Analysis of the use of microwave radiation in sterilization technologies for plant materials. Nauchnyy zhurnal NIU ITMO. Seriya “Protsessy i apparaty pishchevykh proizvodstv”, 3, 81-91. https://doi.org/10.17586/2310-1164-2019-12-3-81-91.
5. Ivanova, A. P., Barsukova, S. A., Khalimendik, A. V., & Chumak, A. N. (2019). Analysis and prospects of research on the influence of microwave radiation on mortars and concrete. Nauka i progress transporta. Vestnik Dnepropetrovskogo natsionalnogo universiteta zheleznodorozhnogo transporta imeni akademika V. Lazaryana, 3, 121-129. ISSN 2307-3489.
6. Repyakh, S. I., & Andreyeva, A. V. (2015). Evaluation of the uniformity of heating graphite-containing molding sand and bodies with microwave radiation. Metallurgicheskaya i gornorudnaya promyshlennost, (2), 29-32. ISSN 2076-0507.
7. Korbanov, V. D., & Valter, A. I. (2018). Production of model equipment in foundry using additive technologies. Izvestiya Tulskogo gosudarstvennogo universiteta. Tekhnicheskiye nauki, 10, 334-338. ISSN 2071-6168.
8. Saranin, L. G. (2018). Comparative evaluation of wood materials in the manufacture of foundry equipment. Izvestiya Tulskogo gosudarstvennogo universiteta. Tekhnicheskiye nauki, 1, 16-20. ISSN 2071-6168.
9. Solonenko, L., Repyakh, S., Prokopovich, I., Sukhoi, K., & Dmytrenko, D. (2019). System analysis of modern areas of increasing environmental and sanitary hygienic safety of using cold hardening mixtures in foundry. Pratsí Odeskoho Polítekhníchnoho Universytetu, (1), 90-98. ISSN 2076-2429.
10. Komarenko, V. V., Nikichenkov, A. N., & Molokov, V. Yu. (2017). On the use of a microwave oven for determining soil moisture. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 11, 60-74. ISSN 2413-1830 (Scopus).
11. Pervunina, A. A. (2012). On the material composition of titanium zirconium placers of the Malyshevskyi deposit. Zbahachennia korysnykh kopalyn: Naukovo-tekhnichnyi Zbirnyk, 50(91), 52-55. ISSN 0135-2326.
12. Schoenfeld, C., Favretto, L., & Loechner, M. (2003). Microwave Synthesis Comes to the Academic Laboratory. American Laboratory, November.
Related news items:
Newer news items:
- Modeling the process of formation of stagnation zones at hazardous production facility with application of CFD technologies - 10/05/2020 07:55
- The environmental reliability of gas-fired boiler units by applying modern heat-recovery technologies - 10/05/2020 07:13
- Effect of filtering box parameters on the protective action of gas filters - 10/05/2020 07:11
- Calculation of static and dynamic losses in power IGBT transistors by polynomial approximation of basic energy characteristicss - 10/05/2020 07:09
- Modeling the development of machine-building industry on the basis of the fuzzy sets theory - 10/05/2020 07:07
- Effect of the chirp on interactions of pure-chirped solitons - 10/05/2020 07:04
- The use of deforming broaching for enhancing the efficiency of cutter chisels - 10/05/2020 07:02
- Development and research of thеrmоplаstiс methods for hardening details - 10/05/2020 07:00
- Evaluation of blast wave parameters within the near-explosion zone in the process of rock breaking with borehole charges - 10/05/2020 06:58
- Method of identification of nonlinear dynamic control objects of preparatory processes before ore dressing - 10/05/2020 06:56
Older news items:
- Synthesizing models of nonlinear dynamic objects in concentration on the basis of Volterra-Laguerre structures - 10/05/2020 06:48
- Back-analysis study on slope instability in an open pit mine (Algeria) - 10/05/2020 06:46
- Technological solutions development for mining adjacent rock mass and pit reserves taking into account geomechanical assessment of the deposit - 10/05/2020 06:45
- The influence of the moisture on the physical and mechanical properties of the sandstone (Separate Unit “Kapitalna” coal mine”, Donbas) - 10/05/2020 06:43
- Subsidence and failures within the territory of Precarpathian salt fields and the possibility of their prediction - 10/05/2020 06:40
- Contens 02 2020 - 10/05/2020 06:34