Коефіцієнт місцевих втрат механічної енергії потоку для суміші шихтових матеріалів
- Деталі
- Категорія: Зміст №2 2021
- Останнє оновлення: 09 травня 2021
- Опубліковано: 30 листопада -0001
- Перегляди: 1546
Authors:
А. М. Селегей, orcid.org/0000-0003-3161-5270, Національна металургійна академія України, м. Дніпро, Україна, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
В. П. Іващенко, orcid.org/0000-0001-5195-2552, Національна металургійна академія України, м. Дніпро, Україна, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
В. І. Головко, orcid.org/0000-0001-5638-6991, Національна металургійна академія України, м. Дніпро, Україна, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
Р. В. Кірія, orcid.org/0000-0003-4842-7188, Інститут геотехнічної механіки імені Н. С. Полякова Національної Академії Наук України, м. Дніпро, Україна , е-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
Л. С. Квасова, orcid.org/0000-0002-7146-3788, Національна металургійна академія України, м. Дніпро, Україна, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2021, (2): 026 - 031
https://doi.org/10.33271/nvngu/2021-2/026
Abstract:
Мета. Встановити залежність коефіцієнта місцевих втрат механічної енергії потоку двокомпонентної суміші шихтового матеріалу від його глибини, вмісту компонентів, середнього еквівалентного діаметра частинок у разі їх вільно-дисперсного руху.
Методика. Величину коефіцієнта місцевих втрат механічної енергії визначали за величиною гідравлічного опору рідини при її русі у відкритих каналах і трубах. У роботі використовували методи порівняльного аналізу, математичного моделювання та прогнозування динамічних процесів у потоці гранульованого матеріалу.
Результати. За результатами теоретичних досліджень отримана математична модель, використання якої дозволяє обчислювати коефіцієнт місцевих втрат механічної енергії для потоку двокомпонентної суміші шихтових матеріалів із розмірами частинок агломерату від 15 до 50 мм, окатишів від 6 до 12 мм, коксу від 10 до 60 мм. Розроблена модель із задовільною точністю дозволяє оцінити рух шихти із зазначених матеріалів по трактах завантажувальних пристроїв доменних печей зі швидкістю в межах від 1,5 до 20 м/с і визначати траєкторії потоку суміші шихтових матеріалів на колошнику з точністю до 0,2 м. Відзначено, що розрахунок зазначеного вище коефіцієнта за відомими методиками недостатньо точний, що пов’язано з невизначеністю вибору єдиного середнього еквівалентного діаметра частинок двокомпонентної шихти. Порівняльний аналіз розробленої моделі з відомими моделями та експериментальними даними свідчить про те, що точність обчислень динамічних параметрів двокомпонентного потоку шихтових матеріалів по розробленій моделі в порівнянні з розрахунками за раніше відомими моделями збільшується на 5–10 % .
Наукова новизна. Уперше встановлені закономірності зміни коефіцієнта внутрішніх механічних втрат двокомпонентного потоку шихтових матеріалів від його глибини, змісту компонентів, середніх еквівалентних діаметрів частинок при русі по трактах завантажувальних пристроїв доменних печей.
Практична значимість. Розроблені математичні залежності, що можуть бути використані для визначення технологічних параметрів завантаження сучасної доменної печі за різних характеристик гранулометрії шихти та співвідношеннях її компонентів. Це дозволить збільшити точність прогнозування ходу розглянутого процесу, ступінь автоматизації систем управління технологічним процесом шихтоподачи доменних печей, надасть можливість більш ефективно використовувати дорогі шихтові матеріали, знизити споживання енергоресурсів і шкідливий вплив на навколишнє середовище.
Ключові слова: шихта, доменна піч, завантажувальний пристрій, енергія, суміш
References.
1. Yoichi Narita, Hiroshi Mio, Takashi Orimoto, & Seiji Nomura (2017). DEM Analysis of Particle Trajectory in Circumferential Direction at Bell-less Top. ISIJ International, 57. https://doi.org/10.2355/isijinternational.ISIJINT-2016-560.
2. Fang Hu, & Peng Hu (2020). A novel approach to investigate the network of granular material using modified 3D DEM simulation. IOP Conference Series: Earth and Environmental Science, 474 072037. https://doi.org/10.1088/1755-1315/474/7/072037.
3. Reichhardt, C. J. O., & Reichhardt, C. (2018). Avalanche dynamics for active matter in heterogeneous media. New Journal of Phyics, 20. 025002. https://doi.org/10.1088/1367-2630/aaa392.
4. Singh, A., Magnanimo, V., Saitoh, K., & Luding, S. (2015). The role of gravity or pressure and contact stiffness in granular rheology. New Journal of Phyics, 17. 043028. https://doi.org/10.1088/1367-2630/17/4/043028.
5. Frolov, A. L., Frolova, O. A., Sumina, R. S., & Sviridova, E. N. (2020). Mathematical modeling of axisymmetric flow of granular materials. Journal of Physics: Conference Series, 1479. 012115. https://doi.org/10.1088/1742-6596/1479/1/012115.
6. Rokitowski, P., & Grygierek, M. (2019). Initial Research on Mechanical Response of Unbound Granular Material under Static Load with Various Moisture Content. Materials Science and Engineering, 471. 032040. https://doi.org/10.1088/1757-899X/471/3/032040.
7. Ivaschenko, V. P., Kiriya, R. V., Selegej, A. M., Golovko, V. I., Ribalchenko, M. O., Papanov, G. A., & Selegej, S. N. (2017). Determination of parameters of shield discharge from bunkers of the infinite loading device of the blast furnace. Collection of research papers of National Mining University, 52, 192-198. ISSN 2071-1859.
8. Kalinin, A. V. (2020). Roughness coefficient of sand riverbeds. Journal of Science and Education of North-West Russia, 6(2), 1-12.
9. Onorin, O., Spirin, N., Istomin, A., Lavrov, V., & Pavlov, A. (2017). Features of Blast Furnace Transient Processes. Metallurgist, 61, 121-126. https://doi.org/10.1007/s11015-017-0464-2.
10. Golovchenko, A., Dychkovskyi, R., Pazynich, Y., Cáceres, C., Howaniec, N., Bartłomiej, J., & Smolinski, A. (2020). Some Aspects of the Control for the Radial Distribution of Burden Material and Gas Flow in the Blast Furnace. Energies, 13(4), 923. https://doi.org/10.3390/en13040923.
11. Chibwe, D., Evans, G., Doroodchi, E., Monaghan, B., Pinson, D., & Chew, S. (2020). Charge material distribution behaviour in blast furnace charging system. Powder Technology, 366, 22-35. https://doi.org/10.1016/j.powtec.2020.02.048.
12. Govender, N., Wilke, D., Chuan-Yu, Wu, & Kureck, H. (2019). A numerical investigation into the effect of angular particle shape on blast furnace burden topography and percolation using a GPU solved discrete element model. Chemical Engineering Science, 204, 9-26. https://doi.org/10.1016/j.ces.2019.03.077.
13. Smyrnova, I., Horbenko, V., Lutsyshyn, A., Kaminskyi, V., Sasiuk, Z., Selivyorstova, T., & Ienina, I. (2020). The method of determining the probability of affection of the semiconductor elements under the influence of the multifrequency space-time signals. International Journal of Emerging Trends in Engineering Research, 8(5), 1776-1779. https://doi.org/10.30534/ijeter/2020/46852020.
14. Smyrnova, I., Selivyorstova, T., Liulchak, S., Sezonova, I., Yuriy, R., & Liashenko, V. (2020). The results of simulation of the process of occurrence of damages to the semiconductor elements of radio-electronic equipment under the influence of multi-frequency signals of short duration. International Journal of Advanced Trends in Computer Science and Engineering, 9(3), 3053-3056. https://doi.org/10.30534/ijatcse/2020/86932020.
Наступні статті з поточного розділу:
- Математичне моделювання надійності електропостачання при низькій якості напруги - 09/05/2021 01:26
- Сегментація споживачів теплової енергії на основі щоденних даних про енерговикористання - 09/05/2021 01:26
- Визначення складових сил різання при фрезеруванні циліндричних поверхонь орієнтованим інструментом - 09/05/2021 01:26
- Закономірності безпечного регулювання поршневих компресорних агрегатів мобільних компресорних станцій - 09/05/2021 01:26
- Керування густиною та швидкістю детонації емульсійних вибухових речовин для відбивання руд - 09/05/2021 01:26
- Електродугове напилення керметних покриттів системи сталь 65Г-TiC - 09/05/2021 01:26
- Техніко-економічне обґрунтування використання редукторних мастил вітрової турбіни для поліпшення роботи теплових насосів у холодному кліматі - 09/05/2021 01:26
- Нові аспекти методології оцінки складності структури технологічних систем гірничо-металургійного комплексу - 09/05/2021 01:26
- Дослідження процесу впорскування штатного й сумішевого палива в дизельному двигуні - 09/05/2021 01:26
- Прогнозування зміни вмісту сірки при збагаченні енергетичного вугілля та рівня викидів сірчистого ангідриду при його спалюванні - 09/05/2021 01:26
Попередні статті з поточного розділу:
- Визначення параметрів склепіння природної рівноваги при формуванні навантаження на кріплення горизонтальної виробки - 09/05/2021 01:26
- Провідні генетичні типи колчеданно-поліметалічних родовищ Рудного Алтаю - 09/05/2021 01:26
- Оптимальний метод оцінки запасів газу на основі розрахунку газогідродинамічних параметрів - 09/05/2021 01:26