Analysis of methods for adaptation of industrial control systems of thermal processes
- Details
- Category: Information technologies, systems analysis and administration
- Last Updated on 23 September 2014
- Published on 23 September 2014
- Hits: 4500
Authors:
V.S. Mykhailenko, Cand. Sci.(Tech.), Associate Professor, State Higher Educational Institution “Odessa National Academy of Food Technologies”, Senior Lecturer of the IT Department, Odessa, Ukraine.
Abstract:
Purpose. The aim is to analyze the effectiveness of traditional and intelligent adaptation methods of automatic control systems of thermal power processes at a thermal power plant (TPP).
Methods. In the course of the study the classical methods of active identification and adaptation of automatic control systems (ACS) were used. Test excitationof ACS startsa transient process which allows to obtain parameters of the object transfer function and calculate the conventional adjustment knob. However, active identification introduces additional disturbance to the site and degrades the quality of control as a whole. Thus, it is proposed to use a heuristic method of experts – fixers in the processes of remote adaptation of single loop ACSswith regard to thetrajectory of the transient characteristic.
Results. The inefficiency of standard adaptation methods of thermal objects in ACS adjustment mode, on the basis of the channel temperature control of superheated steam from TPP was demonstrated experimentally. At the same time, ussng fuzzy logic theory in modeling actionsof personnel in the processes of ACS adjustment and adaptation, it was possible to obtain transient processes with the expected quality indicators.
Scientific novelty. To expedite the process of adaptation of control systems and reduce the impact of additional perturbations, caused by active identification, intelligent approach to calculating settings of proportional-integral-derivative (PID) controller on the basis of Mamdani algorithmwas proposed.
The practical significance. Currently, more than 90% of Ukraine's coal plants units expired their design life and require modernization. At the same time, the vast majority of TPP work with hourly load change in the adjusting mode with the corresponding change in the properties of the control subsystems. The use of intelligent technologies in TPP (ACS) in the processes of identification and adaptation of local ACS with a proportional-integral (PI) and PID controllers will significantly reduce the operating costs, related to excessive consumption of solid fuel because of inefficient transient processes.
References:
1. Oliynik, Ya.I. (2010), “Development of thestate program ofpowerin Western Ukraine”, Naukovyi visnyk Kharkivskogo Natsionalnoho universytetu, no. 2, pp. 169–173.
Олійник Я. І. Розробка державної програми розвитку електроенергетики західного регіону України / Я.І.Олійник // Вісник ХНУ. – 2010. – № 2. – Т. 3.–С. 169–173.
2. Rotach, V.Ya. (2008), Teoriya avtomaticheskogo upravleniya [Automatic Control Theory], Moskovskiy Energeticheskiy Institut, Moscow, Russia.
Ротач В.Я. Теория автоматического управления / Ротач В.Я. – М.: МЭИ, 2008. – 396 с.
3. Itskovich, E.L. (2008), “The competitiveness of Russian producers in the market ofindustrial automation”, Promishlennie controllery ASU, no. 2, pp. 4–10.
Ицкович Э.Л. Конкурентоспособность российских производителей контроллеров на рынке средств автоматизации производства / Э.Л. Ицкович // Промышленные контроллеры АСУ. – 2008. – №2. – C. 4–10.
4. Rotach, V.Ya. (2010), “Setting uptransient responsecontrol systemswithoutthe approximation”, Teploenergetika, , no.10, pp. 50–57.
Ротач В.Я. Настройка промышленных контроллеров по переходным характеристикам систем регулирования без их аппроксимации / В.Я. Ротач, В.Ф. Кузищин, С.В. Петров // Теплоэнергетика. – 2010. –№ 10. – С. 50–57.
5. Denisenko, V.V. (2009), “Non-parametricmodel ofthe control objectto the PIDcontrollerswith auto-tuning”, Pribory i sistemy. Upravlenie, Kontrol, Diagnostika, no. 6, pp. 9–13.
Денисенко В.В. Непараметрическая модель объекта управления в ПИД регуляторах с автоматической настройкой / В.В. Денисенко // Приборы и системы. Управление, контроль, диагностика. – 2009. – №6. – C. 9–13.
6. Astrom, K.J. and Hagglund T. (2006), Advanced PID control, The Instrumentation, Systems, and Automation Society, ISA.
7. Ang, K.H., Chong, G. and Li, Y. (2005), “PID control system analysis, design, and technology”, IEEE Trans. on Control Syst. Tech., vol.13, no. 4, July 2005, pp. 559–576.
8. Eryomin, E.L. (2010), “Adaptive algorithmsfor a classwithdelay in control”, Informatika i sistemy upravleniya, no. 4(26), pp. 137–149.
Еремин Е.Л. Адаптивные алгоритмы для одного класса динамических объектов с запаздыванием по управлению / Е.Л. Еремин, В.Ю. Косицын, Д.А. Теличенко // Информатика и системы управления. – 2010. – №4(26). – С. 137–149.
9. Leonenkov, A.Yu. (2003), Nechetkoye Modelirovaniye v srede Matlabi FuzzyTech [Fuzzy Modelingin Matlaband Fuzzy Tech], BKhV, Saint Petersburg, Russia.
Леоненков А.Ю. Нечеткое моделирование в среде Matlab и fuzzyTech / Леоненков А. Ю. – СПб.: БХВ, 2003. – 720 с.
10. Setting thePID-Instructionsfor Available at: http://www.kontravt.ru/?id=345
Настройка параметров ПИД – регулятора.Инструкция для наладчиков [Электронный ресурс] – режим доступа: www.kontravt.ru/?id=345
.
2014_4_mykhailenko | |
2014-09-17 660.64 KB 1320 |