Geometry variation of ballasted railway tracks due to weather conditions
- Details
- Category: Content №1 2023
- Last Updated on 25 February 2023
- Published on 30 November -0001
- Hits: 3149
Authors:
V.Jóvér, orcid.org/0000-0003-4593-853X, Széchenyi István University, Győr, Hungary
M.Sysyn, orcid.org/0000-0001-6893-0018, Institute of Railway Systems and Public Transport, TU Dresden, Dresden, the Federal Republic of Germany
J.Liu, orcid.org/0000-0002-4779-7761, Southwest Jiaotong University, Chengdu, the People’s Republic of China
S.Fischer*, orcid.org/0000-0001-7298-9960, Széchenyi István University, Győr, Hungary
* Corresponding author e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2023, (1): 074 - 079
https://doi.org/10.33271/nvngu/2023-1/074
Abstract:
Purpose. Investigate and establish the relationship between track geometry measurements and weather conditions to determine the parameters that influence the lifetime of railway tracks’ superstructure system. The study of ballasted beds of railway tracks is very important for operation and maintenance in case of main lines, industrial sidings and mine transport.
Methodology. Determination of the annual load of the selected section based on the regulations. Compari of the track parameters measurements made by TrackScan 4.01 instrument in different seasons and temperatures. Among the parameters measured by the instrument, the track gauge, alignment, longitudinal level, and superelevation parameters are considered and analyzed in this article.Since the main lines’ traffic are permanently loaded with passenger and freight transport and the industrial sidings and mine tracks are used in the production process, the examinations can only be done on tramway tracks during the standstills at night. The results of these measurement on tramway tracks can help to understand the identify of railway tracks’ lifetime and can be used in mainlines, industrial and mining railway tracks.
Findings. The change in the average values of selected track geometrical parameters is analyzed, considering the typical weather conditions. Based on the measurement and results, there is an evident connection between the evaluated results of track geometry measurements and the change in weather conditions.
Originality. Finding the relationship between changes in track geometry values and weather conditions on the basis of an evaluation of track geometry measurements taken on average every third month.
Practical value. The results can then be used as input data for determining the service life of the track superstructure in the case of tramways, mainlines, industrial and mining railway tracks.
Keywords: railway transport, deterioration, ballasted track, traffic load, track gauge
References.
1. Ahac, M., & Lakušić, S. (2015). Tram track maintenance-planning by gauge degradation modelling. Transport, 30(4), 430-436. https://doi.org/10.3846/16484142.2015.1116464.
2. Czinder, B., Vásárhelyi, B., & Török, Á. (2021). Long-term abrasion of rocks assessed by micro-Deval tests and estimation of the abrasion process of rock types based on strength parameters. Engineering Geology, 282, 105996. https://doi.org/10.1016/j.enggeo.2021.105996.
3. 100-year-old Hungarian Geological Institute (2022, September 21). Geological map of Hungary. Retrieved from https://gallery.hungaricana.hu/hu/SzerencsKepeslap/1320146/?img=0.
4. Szabó, B., Pásthy, L., Orosz, Á., & Tamás, K. (2022). The Investigation of Additively Manufacturing and Moldable Materials to Produce Railway Ballast Grain Analogs. Frattura ed Integrità Strutturale, 60, 213-228. https://doi.org/10.3221/IGF-ESIS.60.15.
5. Colas Északkő Ltd (2022). Price list. Retrieved from https://www.colas.hu/wp-content/uploads/pdf/CEK_Arjegyzek_2022.pdf.
6. Hungrail (2022, September 21). Cargo, unprecedented: subsidising the energy costs of much more polluting road freight transport as opposed to green and efficient rail. Retrieved from https://hungrail.hu/2022/03/31/cargo-peldatlan-a-zold-es-hatekony-vasuttal-szemben-a-sokkal-szennyezobb-kozuti-aruszallitas-energiakoltsegeit-tamogatjak-magyar-vasut-ii-evfolyam-7-szam/.
7. Naumov, V., Taran, I., Litvinova, Z., & Bauer, M. (2020). Optimizing resources of multimodal transport terminal for material flow service. Sustainability (Switzerland), 12(16), 6545. https://doi.org/10.3390/su12166545.
8. Saukenova, I., Oliskevych, M., Taran, I., Toktamyssova, A., Aliakbarkyzy, D., & Pelo, R. (2022). Optimization of schedules for early garbage collection and disposal in the megapolis. Eastern-European Journal of Enterprise Technologies, 1(3-115), 13-23. https://doi.org/10.15587/1729-4061.2022.251082.
9. Milosevic, M., Pålsson, B., Nissen, A., Johansson, H., & Nielsen, J. C. O. (2023). Model-Based Remote Health Monitoring of Ballast Conditions in Railway Crossing Panels. In P. Rizzo, & A. Milazzo (Eds.). European Workshop on Structural Health Monitoring. EWSHM 2022. Lecture Notes in Civil Engineering, 253. Springer, Cham. https://doi.org/10.1007/978-3-031-07254-3_51.
10. Rao, P. K. V., Varma, G. R. P., & Vivek, K. S. (2022). Structural dynamic analysis of freight railway wagon using finite element analysis. Materials Today: Proceedings, 66(3), 967-974. https://doi.org/10.1016/j.matpr.2022.04.770.
11. Sweta, K., & Hussaini, S. K. K. (2022). Role of particle breakage on damping, resiliency and service life of geogrid-reinforced ballasted tracks. Transportation Geotechnics, 37, 100828. https://doi.org/10.1016/j.trgeo.2022.100828.
12. Koohmishi, M. (2021). Assessment of strength of individual ballast aggregate by conducting point load test and establishment of classification method. International Journal of Rock Mechanics and Mining Sciences, 141, 104711. https://doi.org/10.1016/j.ijrmms.2021.104711.
13. Taran, I. A. (2012). Interrelation of circular transfer ratio of double-split transmissions with regulation characteristic in case of planetary gear output. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 78-85.
14. Samorodov, V., Bondarenko, A., Taran, I., & Klymenko, I. (2020). Power flows in a hydrostatic-mechanical transmission of a mining locomotive during the braking process. Transport Problems, 15(3), 17-28. https://doi.org/10.21307/TP-2020-030.
15. BKV Zrt (2019). Infrastructure design guidelines for tramways. Retrieved from https://static.bkv.hu/ftp/ftp/fajlok/sarga_konyv/15.pdf.
16. Gáspár, L., Horvát, F., & Lublóy, L. (2011). Lifetime of transport infrastructure facilities. Universitas-Győr Nonprofit Kft., Győr.
17. Jóvér, V., & Fischer, S. (2022). Investigation of superstructures of tramway line no. 1 in Budapest. Baltic Journal of Road and Bridge Engineering, 17(2), 75-106. https://doi.org/10.7250/bjrbe.2022-17.561.
18. Jóvér, V., Gáspár, L., & Fischer, S. (2022). Investigation of Tramway Line No. 1, in Budapest, Based on Dynamic Measurements. Acta Polytechnica Hungarica, 19(3), 65-76. https://doi.org/10.12700/APH.19.3.2022.3.6.
19. BKV Zrt (2019). Technical instructions for the construction and maintenance of tramway tracks, P.1. Retrieved from https://static.bkv.hu/ftp/ftp/fajlok/sarga_konyv/24.pdf.
20. Metalelektro Railway Diagnostic (2022, September 21). Track Geometry Measurement. Retrived from https://www.metalelektro.eu/track-geometry.
21. Jóvér, V., Gáspár, L., & Fischer, S. (2020). Investigation of Geometrical Deterioration of Tramway Tracks. Nauka ta Progres Transportu, 86(2), 46-59. https://doi.org/10.15802/stp2020/204152.
22. Weather archive (2022, September 21). Retrived from https://www.meteoblue.com/hu/id%C5%91j%C3%A1r%C3%A1s/historyclimate/weatherarchive/budapest_magyarorsz%c3%a1g_3054643.
Newer news items:
- Analysis of numeric results for analogue of Galin’s problem in curvilinear coordinates - 25/02/2023 01:06
- Research on the impact of cognitive biases of workers on the subjective assessment of occupational risk - 25/02/2023 01:06
- Criminological characterization of environmental crimes in the field of subsurface resources protection - 25/02/2023 01:06
- Reducing external air leakage at the main ventilation unit of the mine - 25/02/2023 01:06
- Minimization of power fluctuations of wind power plants when constructed in exclusion zones of enterprises - 25/02/2023 01:06
- Mathematical model of the closed-loop system of excavator bucket positioning - 25/02/2023 01:06
- Increasing the energy efficiency of modes of distribution networks with photovoltaic stations - 25/02/2023 01:06
- Load of a semi-car having the dismountable roof of composites - 25/02/2023 01:06
- Analysis of surface settlements induced by tunnel excavation with EPB-TBM - 25/02/2023 01:06
- Features of modernization of a truck with a hybrid power transmission - 25/02/2023 01:05
Older news items:
- Graphitizing modification of the axial zone of cast iron rolling rolls in the liquidus-solidus temperature range - 25/02/2023 01:05
- Reverse flotation process in double stage on the Algerian phosphate ore treatment - 25/02/2023 01:05
- Modeling of drilling water supply wells with airlift reverse flush agent circulation - 25/02/2023 01:05
- Geomechanical substantiation of parameters for safe completion of mining the coal reserves adjacent to main workings - 25/02/2023 01:05
- Pressure distribution in the oil reservoir in a two-dimensional plane - 25/02/2023 01:05
- Predicting underground mining impact on the earth’s surface - 25/02/2023 01:05
- Peculiarities of the formation of the Zhailma volcano-tectonic deep - 25/02/2023 01:05
- Algorithm for the formation of price lists for raw amber taking into account individual consumer characteristics - 25/02/2023 01:05
- Lithium and gold content in salt domes and saline lands of Western and Southern Kazakhstan - 25/02/2023 01:05
- Method for determining the ultimate sorption capacity of coal matter by EPR-spectroscopy - 25/02/2023 01:05