Estimation of glass lubricant viscosity for hot extrusion of Cr-Ni steel and Ni alloy tubes

User Rating:  / 0
PoorBest 

Authors:


M.Medvedev, orcid.org/0000-0002-1230-420X, Ukrainian State University of Science and Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Ye.Shyfrin, orcid.org/0000-0002-0270-2212, Ukrainian State University of Science and Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Ya.Frolov, orcid.org/0000-0001-6910-6223, Ukrainian State University of Science and Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

O.Bobukh, orcid.org/0000-0001-7254-3854, Ukrainian State University of Science and Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


повний текст / full article



Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2022, (1): 033 - 037

https://doi.org/10.33271/nvngu/2022-1/033



Abstract:



Purpose.
Estimation of optimal viscosity of a glass lubricant for chromium-nickel steel tube extrusion depending on the deformation resistance, chemical composition of metal and the temperature, degree and rate of deformation.


Methodology.
To determine the force conditions for tube extrusion, a complex factor of deformation resistance was used, which consists in estimating the value of deformation resistance under the basic process parameters of extrusion plants and its refinement depending on the deviations of heating temperature and wall thickness of billets as well as the degree and rate of deformation from the base conditions.


Findings.
The dependence of basic values of deformation resistance on the percentage of alloying elements (Ni + Cr) in steels has been found. With the addition of hardening alloying elements (Mo, W, V, Nb) into the alloy steel, its deformation resistance increases in proportion to their percentage. Analytical expressions for calculating the base values of deformation resistance for different extrusion plants have been obtained.


Originality.
For the first time, the principles governing estimation of the optimal viscosity of glass lubricants based on the chemical composition of steel to be formed, its temperature and the degree and rate of deformation of the blank, thickness of the lubricating layer and geometric dimensions of the tool (die) in hot extrusion of tubes have been established.


Practical value.
The use of the results of calculation according to the developed method will make it possible to increase the surface quality of tubes manufactured by extrusion and reduce the volume of their subsequent machining.



Keywords:
alloying elements, deformation resistance, glass lubricant viscosity, extrusion ratio, extrusion, alloys

References.


1. Kuznetcov,V.I., Vydrin,A.V., Korol,A.V., Pashnina,E., Zhukov,A.S., & Zubkov,A.M. (2017). Researching of the influence of granulometric composition of glass-lubricants on the process of pressing pipes of Steel 20. Bulletin of the South Ural State University Series Metallurgy, 17(4), 74-82. https://doi.org/10.14529/met170408.

2. Kuznetcov,V.I., Vydrin,A.V., Korol,A.V., Pashnina,E., Zhukov,A.S., & Zubkov,A.M. (2018). Effect of the properties of glass-lubricants on the process of pressing pipes from stainless steel 08Cr18Ni10Ti. Bulletin of the South Ural State University Series Metallurgy, 18(3), 67-78. https://doi.org/10.14529/met180308.

3. Kosmatskii,Y.I., Barichko,B.V., Yakovleva,K.Y., Fokin,N.V., & Nikolenko, V.D. (2020). Experimental Results of Pressing and Cold Deformation for the Development of New Pipe Products. Steel in Translation, 50(12), 902-905. https://doi.org/10.3103/S0967091220120062.

4. Rakhmanov,S.R., & Homan,.G. (2011). Modeling of deformation zone when extruding seamless pipes taking into account grease lubricant. Metallurgical and Ore Mining Industry, (1(265)), 52-56. Retrieved from https://www.metaljournal.com.ua/1-265-2/.

5. Bespalova,N.A. (2011). Influence of lubricant dosing and composition on the quality of pressed pipe made from hard-to-deform alloys. Steel in Translation, 41(9), 761-764. https://doi.org/10.3103/S0967091211090038.

6. Safara,N., Engberg,G., & gren,J. (2019). Modeling Microstructure Evolution in a Martensitic Stainless Steel Subjected to Hot Working Using a Physically Based Model. Metallurgical and Materials Transactions A, 50(3), 1480-1488. https://doi.org/10.1007/s11661-018-5073-6.

7. Bergeman,G.B., Sokolov,S.F., & Andreiev,V.V. (2015). Experimental research of strain resistance steels and determination of the parameters hardening-softening during hot metal forming. Materials Working by Pressure, (2(41)), 238-244. Retrieved from http://www.dgma.donetsk.ua/science_public/omd/omd_2(41)_2015/article/41.pdf.

8. Firsova,T.I. (2012). Methods of estimating the parameters of hardening-softening of rheologically complex metals n plastometricl curves. Materials Working by Pressure, (1(30)), 65-68. Retrieved from http://www.dgma.donetsk.ua/science_public/omd/1(30)-2012/article/12FTIMPC.pdf.

9. Motlagh,Z.S., Tolaminejad,B., & Momeni,A. (2020). Prediction of Hot Deformation Flow Curves of 1.4542 Stainless Steel. Metals and Materials International, 1-18. https://doi.org/10.1007/s12540-020-00627-7.

10. Klymenko,P.L. (2011). Strengthening of steel and non-ferrous metals by cold and hot deformation: monograph. Dnepropetrovsk: Porogi. ISBN 978-617-518-133-1.

11. Medvedev,M.I., Frolov,Y.V., Bobukh,A.S., & Andreev,A.V. (2021). Experimental evaluation of the curves of maximal ductility and fluidity for titanium alloys in hot torsion testing. Tsvetnye Metally, (5), 71-77. https://doi.org/10.17580/tsm.2021.05.09.

12. Barichko,B.V., Kosmatskii,Y.I., & Medvedev,M.I. (2010). Comparative analysis of two methods of determining the force parameters in the extrusion of tubes made of stainless steels and alloys. Metallurgist, 54(3-4), 244-247. https://doi.org/10.1007/s11015-010-9287-0.

13. Danchenko, V.N., Frolov, Y.V., Dekhtyarev, V.S., Golovchenko,A.P., Belikov, Y.M., Tereshchenko, A.A., & Chigirinskiy, Y.V. (2011). Development of pipe cold pilger rolling mode computation method with account of metal properties change. Metallurgical and Mining Industry, 3, 110-113. Retrieved from https://www.metaljournal.com.ua/assets/Uploads/attachments/3033Danchenko.pdf.

14. Stalinsky, D.V., Rudiuk, A.S., Medvedev, V.S., Krivonosov, A.I., & Striukov, S.B. (2014). Computer program for calculation of the technological parameters of rolling. Steel, (3), 53-56. Retrieved from https://elibrary.ru/item.asp?id=21459900.

15. Lotkov,A., Grishkov,V., Baturin,A., Timkin,V., & Zhapova,D. (2019). Yield Stress and Reversible Strain in Titanium Nickelide Alloys after Warm Abc Pressing. Materials (Basel, Switzerland), 12(19), 1-14. https://doi.org/10.3390/ma12193258.

16. Gerstein,G., Kahra,C., Golovko,O., Schfke,F., Klose,C., Herbst,S., , & Maier,H.J. (2021). Hot forming of shape memory alloys in steel shells: Formability, interface, bonding quality. Production Engineering, 15(2), 271-283. https://doi.org/10.1007/s11740-021-01024-8.

17. Karsten,E., Gerstein,G., Golovko,O., Dalinger,A., Lauhoff,C., Krooss,P., , & Maier,H.J. (2019). Tailoring the microstructure in polycrystalline CoNiGa high-temperature shape memory alloys by hot extrusion. Shape Memory and Superelasticity, 5(1), 84-94. https://doi.org/10.1007/s40830-019-00208-7.

18. Medvedev,M.I. (2020). Pressing of pipes made of nickel and titanium alloys (theoretical and technological issues): monography. Dnipro: Nova ideolohiya. ISBN 978-617-7068-61-6.

 

Visitors

7169064
Today
This Month
All days
52
109942
7169064

Guest Book

If you have questions, comments or suggestions, you can write them in our "Guest Book"

Registration data

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Journal was registered by Ministry of Justice of Ukraine.
Registration number КВ No.17742-6592PR dated April 27, 2011.

Contacts

D.Yavornytskyi ave.,19, pavilion 3, room 24-а, Dnipro, 49005
Tel.: +38 (056) 746 32 79.
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
You are here: Home Archive by issue 2022 Content №1 2022 Estimation of glass lubricant viscosity for hot extrusion of Cr-Ni steel and Ni alloy tubes