Моделювання поверхні на основі визначення геоїда для боротьби з підтопленням у районі вапнякового родовища Евекоро (Нігерія)

Рейтинг користувача:  / 0
ГіршийКращий 

Authors:


A. П. Акінола, orcid.org/0000-0002-4706-2124, Факультет гірничої промисловості, Університет Джоса, м. Джос, Нігерія, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.

T. Б. Афені, orcid.org/0000-0001-8216-8007, Факультет гірничої промисловості, Федеральний технічний університет Акуре, м. Акуре, Нігерія

Р. A. Осеменам, orcid.org/0000-0002-6808-6141, Факультет гірничої промисловості, Федеральний технічний університет Акуре, м. Акуре, Нігерія


повний текст / full article



Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2021, (5): 022 - 029

https://doi.org/10.33271/nvngu/2021-5/022



Abstract:



Мета.
Визначення висоти геоїда в різних контрольних точках кар’єра, розташованих у північній і південній зонах вапнякового родовища, що розробляє компанія Lafarge WAPCO Cement Ewekoro у штаті Огун, Нігерія.


Методика.
Для визначення висот геоїда в різних контрольних точках кар’єра, розташованих у північній і південній зонах вапнякового родовища, були використані дані GPS і горизонтальної зйомки, що дозволили побудувати три моделі поверхні: поліноміальну модель регресії, модель інверсної відстані й модель найближчого сусіда. Дані моделі були використані для перехресної перевірки висоти геоїда в різних контрольних точках.


Результати.
Результати дослідження показали, що розбіжність між значеннями висот геоїда, отриманими за допомогою GPS-горизонтальної зйомки та шляхом моделювання, знаходиться у межах 0,03 та 0,01 м відповідно. На основі моделей були складені контурні карти й позначені найкращі локації для відводу паводку.


Наукова новизна.
Результати зіставлені з даними, що можна отримати у процесі експлуатації родовища.


Практична значимість
. Підтоплення забою кар’єра можна краще регулювати, якщо створити дренажний відстійник у найнижчій точці карт висот і провести кероване буріння для забезпечення кращої аерації.


Ключові слова:
вапнякове родовище, GPS-горизонтальна зйомка, висота геоїда, моделі поверхні, боротьба з підтопленням

References.


1. Leavitt, B. R. (1999). Mine flooding and barrier pillar hydrology in the Pittsburgh basin. Sixteenth annual international Pittsburgh Coal Conference, 31(36), 31042017. Retrieved from https://inis.iaea.org/search/search.aspx?orig_q=RN:31042017.

2. Reigber, C., Balmino, G., Schwintzer, P., Biancale, R., Bode, A., Lemoine, J.-M., & Zhu, S. Y. (2002). A high-quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophysical Research Letters, 29(14), 37.1-37.4. https://doi.org/10.1029/2002gl015064.

3. Abdalla, K. A. (2005). Unification of the Georeferencing Systems of GIS Spatial Data Infrastructure. Proceedings of Map Middle East Conference, 1-11. Retrieved from https://www.researchgate.net/publication/330500573.

4. Reigber, Ch., Jochmann, H., & Wunsch, J. (2004). Earth Gravity Field and Seasonal Variability from CHAMP. Earth Observation with CHAMP, 25-30. https://doi.org/10.1007/3-540-26800-6_4.

5. Skrypnyk, O., Shapar, A., & Taranenko, O. (2020). Determining local wetness conditions within the mined lands using GIS. Mining of Mineral Deposits, 14(4), 53-58. https://doi.org/10.33271/mining14.04.053.

6. Kiamehr, R. (2001). Potential of the Iranian Geoid For GPS/Leveling. Proc National Cartographic Center of Iran, Geomatics, 1-10. Retrieved from https://www.academia.edu/714927.

7. Algarni, D. A. (1997). Geoid Modeling in Saudi Arabia. ITC Journal, (2), 114-120.

8. Reigber, C., Schwintzer, P., Neumayer, K.-H., Barthelmes, F., König, R., Förste, C., & Fayard, T. (2003). The CHAMP-only earth gravity field model EIGEN-2. Advances in Space Research, 31(8), 1883-1888. https://doi.org/10.1016/s0273-1177(03)00162-5.

9. Akeju, V. O., & Afeni, T. B. (2015). Investigation of the spatial variability in Oyo-Iwa limestone deposit for quality control. Journal of Engineering Science and Technology, 10(8), 1065-1085.

10. McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., & Veis, G. (2000). Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research: Solid Earth, 105(3), 5695-5719. https://doi.org/10.1029/1999jb900351.

11. Watson, C. S., & Coleman, R. (1998). The Batman Bridge: structural monitoring using GPS. Advances in GPS Deformation Monitoring, 8. Retrieved from http://ecite.utas.edu.au/14264.

12. Çelebi, M., Prescott, W., Stein, R., Hudnut, K., Behr, J., & Wilson, S. (1999). GPS Monitoring of Dynamic Behavior of Long-Period Structures. Earthquake Spectra, 15(1), 55-66. https://doi.org/10.1193/1.1586028.

13. Dvorak, J. J. (1992). Tracking the movement of Hawaiian volcanoes; Global Positioning System (GPS) measurement. Earthquakes & Volcanoes (USGS), 23(6), 255-267. Retrieved from https://pubs.usgs.gov/unnumbered/70039050/report.pdf.

14. Murray, M., Baxter, R., Karavas, B., & Burgmann, R. (1999). Permanent GPS network: Bay area regional deformation array. Annual Report, Berkeley CA, USA. Retrieved from https://seismo.berkeley.edu/annual_report/ar97_98/node7.html.

15. Kajzar, V. (2018). Geodetic and seismological observations applied for investigation of subsidence formation in the CSM mine. Mining of Mineral Deposits, 12(2), 34-46. https://doi.org/10.15407/mining12.02.034.

16. Fotopoulos, G. (2005). Calibration of geoid error models via a combined adjustment of ellipsoidal, orthometric and gravimetric geoid height data. Journal of Geodesy, 79(1-3), 111-123. https://doi.org/10.1007/s00190-005-0449-y.

17. Corchete, V., Chourak, M., & Khattach, D. (2005). The high-resolution gravimetric geoid of Iberia: IGG2005. Geophysical Journal International, 162(3), 676-684. https://doi.org/10.1111/j.1365-246x.2005.02690.x.

 

Наступні статті з поточного розділу:

Відвідувачі

3701040
Сьогодні
За місяць
Всього
354
3578
3701040

Гостьова книга

Якщо у вас є питання, побажання або пропозиції, ви можете написати їх у нашій «Гостьовій книзі»

Реєстраційні дані

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Журнал зареєстровано у Міністерстві юстиції України.
Реєстраційний номер КВ № 17742-6592ПР від 27.04.2011.

Контакти

49005, м. Дніпро, пр. Д. Яворницького, 19, корп. 3, к. 24 а
Тел.: +38 (056) 746 32 79.
e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
Ви тут: Головна Головна UkrCat Архів журналу 2021 Зміст №5 2021 Моделювання поверхні на основі визначення геоїда для боротьби з підтопленням у районі вапнякового родовища Евекоро (Нігерія)