Justification of the criterion for optimal control of the self-grinding process of ores in drum mills
- Details
- Category: Content №4 2024
- Last Updated on 28 August 2024
- Published on 30 November -0001
- Hits: 2443
Authors:
I.V.Novytskyi, orcid.org/0000-0002-8780-6589, Dnipro University of Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Y.O.Shevchenko*, orcid.org/0000-0002-3895-3937, Dnipro University of Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
* Corresponding author e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2024, (4): 061 - 066
https://doi.org/10.33271/nvngu/2024-4/061
Abstract:
Purpose. Justification of the criterion for automatic optimization of the ore grinding process in self-grinding drum mills by compiling and researching mathematical models of material movement inside the drum of a rotating mill.
Methodology. Methods of mathematical modeling of the internal mechanics of drum mills in combination with experimental studies of the spectral density of the variable component of the active power consumed by the drive motor of the mills are used.
Findings. As a result of the simulation, it was established that the loose material placed on the inner surface of the rotating drum undergoes periodic oscillations under certain conditions. The parameters of these oscillations depend on the radius of the drum, the amount of material and the coefficient of friction. It is theoretically justified that in the case of load fluctuations, the work of friction forces and, therefore, the process of material destruction intensifies. The theoretically obtained conclusions are confirmed by the results of experimental studies of the active power signal spectrum of the drive motor of the mills in the characteristic low-frequency range. It is found that the most intense fluctuations occur at a certain degree of filling of the drum of the mill in the working range of fillings and their intensity correlates with the productivity of the mill according to the newly created finished class.
Originality. The mechanism of occurrence of fluctuations in the ore load of drum mills is revealed and the connection of this phenomenon with indicators of the technological efficiency of the grinding process is substantiated.
Practical value. It is advisable to use the intensity of fluctuations of the ore load as a criterion for automatic control of mill loading, since this parameter characterizes the technological efficiency of the mill and can be measured quickly. Using the intensity of ore loading fluctuations as a control criterion allows implementing a search system for extreme control of mill loading.
Keywords: performance, drum mill, oscillations, ore load, self-crushing, optimization, mathematical model
References.
1. Sokur, M. I., Biletskyi, V. S., Vidmid, I. O., & Robota, E. M. (2020). Ore preparation (crushing, grinding, classification): monograph. ISBN 978-617-639-272-9.
2. Maruta, O. N., & Butnyk, A. M. (2003). Making rational economic decisions in gaming, risky and uncertain situations. Kharkiv: PH “Ingek”, 167-168. ISBN 966-8327-93-4.
3. Novytskyi, I. V., & Us, S. A. (2017). Modern theory of healing: textbook for universities. National Mining University. ISBN 978-966-350-661-6.
4. Sokur, V., Biletskyy, L., Sokur, D., & Bozyk, I. (2016). Investigation of the process of crushing solid materials in the centrifugal disintegrators. Eastern-European Journal of Enterprise Technologies. 3/7(81), 34-40.
5. Novytskyi, I., Sliesariev, V., & Shevchenko, Y. (2022). Self-adjusting filling control system for self-grinding drum mills. Collection of research papers of the National Mining University, 71, 203-210.
https://doi.org/10.33271/crpnmu/71.203.
6. Pageau, J., Pouliot, M., Bouchard, J., & Poulin, É. (2023). A misconception in regulatory control of secondary grinding circuits. IFAC-PapersOnLine, 56(2), 2689-2694. https://doi.org/10.1016/j.ifacol.2023.10.1362.
7. Zuñiga, J. M., & Mantari, J. L. (2017). A computational methodology to calculate the required power in disc crushers. Original Research Article. Journal of Computational Design and Engineering, 4(1), 14-20. https://doi.org/10.1016/j.jcde.2016.09.003.
8. Akande, S., Adebayo, B., & Akande, J. M. (2013). Comparative Analysis of Grindability of Iron ore and Granite. Journal of Mining World Express, 2(3), 55-62.
9. Silva, M., & Casali, A. (2015). Modelling SAG milling power and specific energy consumption including the feed percentage of intermediate size particles. Minerals Engineering, 70, 156-161. https://doi.org/10.1016/j.mineng.2014.09.013.
10. Jankovic, A., Dundar, H., Mehta, R., & Jankovic, A. (2010). Relationships between comminution energy and product size for a magnetite ore. The Journal of the Southern African Institute of Mining and Metallurgy, 110, 141-146. Retrieved from https://www.scielo.org.za/pdf/jsaimm/v110n3/07.pdf.
11. Morrell, S. (2009). Predicting the overall specific energy requirement of crushing, high pressure grinding roll and tumbling mill circuits. Minerals Engineering, 22(6), 544-549. https://doi.org/10.1016/j.mineng.2009.01.005.
12. Ting, D., Shiliang, Y., & Shuai, W. (2024). Super-quadric DEM study of cylindrical particle behaviors in a rotating drum. Powder Technology, 437. https://doi.org/10.1016/j.powtec.2024.119511.
13. Shevchenko, Y. O., & Novytskyi, I. V. (2012). Adaptive control system for the coarse crushing process. Mining electromechanics and automation, 88, 10-105.
14. Novytskyi, I. V., & Shevchenko, Y. O. (2014). Adaptive loading control system for autogenous drum mills. Collection of research papers of the National Mining University, 44, 103-109.
15. Morkun, V., & Morkun, N. (2018). Estimation of the crushed ore particles density in the pulp flow based on the dynamic effects of high-energy ultrasound. Archives of Acoustics, 43(1), 61-67. https://doi.org/10.24425/118080.
16. Monov, V., Sokolov, B., & Stoenchev, S. (2012). Grinding in Ball Mills: Modeling and Process Control. The Journal of Institute of Information and Communication Technologies of Bulgarian Academy of Sciences, 12(2). https://doi.org/10.2478/cait-2012-0012.
17. Tavares, L. M. (2017). A Review of Advanced Ball Mill Modelling. KONA Powder and Particle Journal, 34, 106-124. http://doi.org/10.14356/kona.2017015.
18. Dubé, O., Alizadeh, E., Chaouki, J., & Bertrand, F. (2013). Dynamics of non-spherical particles in a rotating drum. Chemical Engineering Science, 101, 486-502. https://doi.org/10.1016/j.ces.2013.07.011.
19. Cunkui, Huang, & Masami, Nakagawa (2023). Effects of rotation axis on mixing behavior of dissimilar particles in rotating drums. Powder Technology, 428. https://doi.org/10.1016/j.powtec.2023.118868.
20. Vu, D. Ch., Amarsid, L., Delenne, J.-Y., Richefeu, V., & Radjai, F. (2024). Rheology and scaling behavior of polyhedral particle flows in rotating drums. Powder Technology, 434. https://doi.org/10.1016/j.powtec.2023.119338.
21. Kumar, S., Khatoon, S., Parashar, Sh., Dubey, P., Yogi, J., & Anand, A. (2023). Effect of aspect ratio of ellipsoidal particles on segregation of a binary mixture in a rotating drum. Powder Technology, 427. https://doi.org/10.1016/j.powtec.2023.118682.
22. Tomaru, T., Miyamoto, K., Amemoto, H., & Akaboshi, K. (2010). The Characteristics and Self-Stabilizing Control of the Grinding Mill Process. IFAC Proceedings Volumes, 20(8), 85-90. https://doi.org/10.1016/S1474-6670(17)59075-8.
23. Mariuta, A. N. (2001). Theory of modeling vibrations of working bodies of mechanisms and its applications. Dnepropetrovsk: National Mining University. ISBN 5-86400-001-9.
Newer news items:
- On the issue of load’s external ballistics under low-speed transportation - 28/08/2024 03:24
- Designing the predictive control of a drum dryer using multi-agent technology - 28/08/2024 03:24
- Cumulative triangle for visual analysis of empirical data - 28/08/2024 03:24
- The right to a safe environment: economic and legal guarantees of provision in Ukraine - 28/08/2024 03:23
- Floristic and ecological structure of the landfill vegetation in the Western Forest Steppe of Ukraine - 28/08/2024 03:23
- The effect of petroleum products pollution on environmental soil condition at airport adjacent territory - 28/08/2024 03:23
- Features of the assessment of occupational risks under hazardous working conditions - 28/08/2024 03:23
- Environmental toxicity assessment of mining waste from an abandoned Zn-Pb mine - 28/08/2024 03:23
- Application of modern mathematical apparatus for determining the dynamic properties of vehicles - 28/08/2024 03:23
- Strength analysis of the model 918 wagon under non-typical bulk loads - 28/08/2024 03:23
Older news items:
- Combined roasting and leaching treatment for reducing phosphorus, aluminum and silicon in oolitic iron ore - 28/08/2024 03:23
- Enhanced oil recovery of deposits by maintaining a rational reservoir pressure - 28/08/2024 03:23
- Implementation of a mathematical component in the device development for operational control of the dump truck - 28/08/2024 03:23
- Assessment of the contamination degree of gas pipeline branches during mined-out space degasification - 28/08/2024 03:23
- Influence of disperse-hardening additive chrome diboride on the structure of carbide matrixes of PDC drill bits - 28/08/2024 03:23
- Sorption capacity and natural gas content of coal beds of Donbas - 28/08/2024 03:23
- Influence of rock shear processes on the methane content of longwall faces - 28/08/2024 03:23
- Study of geodynamic and hydrogeological criteria for assessing the hydrocarbon potential of the Alakol depression - 28/08/2024 03:23