Combined roasting and leaching treatment for reducing phosphorus, aluminum and silicon in oolitic iron ore
- Details
- Category: Content №4 2024
- Last Updated on 28 August 2024
- Published on 30 November -0001
- Hits: 2174
Authors:
I.Ammour*, orcid.org/0000-0002-9637-2057, Laboratory of Recovery and Recycling of Matter for Sustainable Development, USTHB,University of Science and Technology Houari Boumediene, Bab Ezzouar, Algiers, Algeria, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
N.Sabba, orcid.org/0000-0002-5107-5083, Laboratory of Recovery and Recycling of Matter for Sustainable Development, USTHB,University of Science and Technology Houari Boumediene, Bab Ezzouar, Algiers, Algeria
I.Zeriri, orcid.org/0009-0006-5247-8841, Environmental Research Center (C.R.E), Annaba, Algeria
A.Bouslama, orcid.org/0009-0004-5218-7708, Department of Architecture, Faculty of Earth Sciences, Badji Mokhtar University, Annaba, Algeria
E.Sakher, orcid.org/0000-0002-0235-2873, Environmental Research Center (C.R.E), Annaba, Algeria; Laboratory of Energy Environment and Information System (LEEIS), Department of Material Science, Faculty of Science and Technology, African University Ahmed Draia, Adrar, Algeria
* Corresponding author e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2024, (4): 055 - 060
https://doi.org/10.33271/nvngu/2024-4/055
Abstract:
Purpose. To enhance the quality of oolitic iron ore extracted from the Gara Djebillet mine in southern Algeria by reducing the levels of silicon, aluminum, and phosphorus, thus making it more suitable for use in the steel industry.
Methodology. The study involves pre-treating the Gara Djebillet iron ore through roasting, followed by two stages of leaching with separate acid and base leaching steps. Additionally, the impact of introducing an additional roasting step at 800 °C between the two leaching stages is examined.
Findings. Chemical leaching of the raw ore without roasting pre-treatment results in a reduction in silicon, aluminum, and phosphorus contents from 4.45, 5.11 and 0.61 % to 2.68, 3.36 and 0.3 %, respectively. However, the iron content decreases from 52.42 to 45 %. Pre-treating the ore with roasting combined with the two leaching stages reduces the phosphorus content to 0.15 % and increases the iron content to 55.25 %. The silicon and aluminum contents decrease to 4.2 and 5 %, respectively. Introducing a second roasting step between the two leaching stages further decreases the phosphorus content to 0.15 %, but the iron content only increases to 54.25 % after the second acid leaching step. The aluminum and silicon contents increase to 4.5 and 5.3 %, respectively.
Originality. This study introduces a novel approach to improving the quality of oolitic iron ore by investigating the efficacy of pre-treatment with roasting followed by two stages of leaching. The research contributes valuable insights into the effectiveness of these methods for reducing undesirable elements in iron ore.
Practical value. The findings offer practical implications for the steel industry, suggesting potential methods for enhancing the quality of iron ore from the Gara Djebillet mine. Implementing these methods could lead to increased efficiency and cost-effectiveness in iron ore processing, ultimately benefiting steel production processes.
Keywords: oolitic iron ore, leaching, roasting, phosphorus removal
References.
1. Bersi, M., Saibi, H., & Chabou, M. C. (2016). Aerogravity and remote sensing observations of an iron deposit in Gara Djebilet, southwestern Algeria. Journal of African Earth Sciences, 116, 134-150. https://doi.org/10.1016/j.jafrearsci.2016.01.004.
2. Gialanella, S., Girardi, F., Ischia, G., Lonardelli, I., Mattarelli, M., & Montagna, M. (2010). On the goethite to hematite phase transformation. Journal of thermal analysis and calorimetry, 102(3), 867-873. https://doi.org/10.1007/s10973-010-0756-2.
3. Zhu, X., Qin, Y., Han, Y., & Li, Y. (2022). Novel Technology for Comprehensive Utilization of Low-Grade Iron Ore. Minerals, 12(4), 493. https://doi.org/10.3390/min12040493.
4. Pereira, A. C., & Papini, R. M. (2015). Processes for phosphorus removal from iron ore-a review. Rem: Revista Escola de Minas, 68, 331-335. https://doi.org/10.1590/0370-44672014680202.
5. Zhang, X., Gu, X., Han, Y., Álvarez, N. P., Claremboux, V., & Kawatra, S.K. (2021). Flotation of iron ores: A review. Mineral processing and extractive metallurgy review, 42(3), 184-212. https://doi.org/10.1080/08827508.2019.1689494.
6. Matiolo, E., Couto, H. J. B., Lima, N., Silva, K., & de Freitas, A. S. (2020). Improving recovery of iron using column flotation of iron ore slimes. Minerals Engineering, 158, 106608. https://doi.org/10.1016/j.mineng.2020.106608.
7. Mansour, F., Ould-Hamou, M., Merchichi, A., & Gven, O. (2021). Recovery of iron and phosphorus removal from Gara Djebilet iron ore (Algeria). Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 82-88. https://doi.org/10.33271/nvngu/2021-4/082.
8. Mochizuki, Y., & Tsubouchi, N. (2019). Upgrading Low-Grade Iron Ore through Gangue Removal by a Combined Alkali Roasting and Hydrothermal Treatment. ACS omega, 4(22), 19723-19734. https://doi.org/10.1021/acsomega.9b02480.
9. Jin, Y.-s., Jiang, T., Yang, Y.-b., Li, Q., Li, G.-h, & Guo, Y.-f. (2006). Removal of phosphorus from iron ores by chemical leaching. Journal of Central South University of Technology, 13(6), 673-677. https://doi.org/10.1007/s11771-006-0003-y.
10. Kim, H., Yeu, I. W., Han, G., Ju, G., Lee, Y.J., Shin, Y.-h., …, & Kim, H.-j. (2021). Surface morphology evolution and underlying defects in homoepitaxial growth of GaAs (110). Journal of Alloys and Compounds, 874, 159848. https://doi.org/10.1016/j.jallcom.2021.159848.
11. Mayr, M., Stehl, C., Fischer, M., Gsell, S., & Schreck, M. (2014). Correlation between surface morphology and defect structure of heteroepitaxial diamond grown on off-axis substrates. Physica status solidi (a), 211(10), 2257-2263. https://doi.org/10.1002/pssa.201431210.
12. Xi, F., Cui, H., Yang, T., Li, S., Ma, W., Chen, X., …, & Chen, R. (2020). Mechanism of enhancing Fe removal from metallurgical grade silicon by metal-assisted chemical leaching. Journal of Materials Research and Technology, 9(6), 12213-12222. https://doi.org/10.1016/j.jmrt.2020.09.007.
13. Walter, D., Buxbaum, G., & Laqua, W. (2001). The mechanism of the thermal transformation from goethite to hematite. Journal of Thermal Analysis and Calorimetry, 63(3), 733-748. https://doi.org/10.1023/A:1010187921227.
14. Hamisi, H., Park, S.E., Choi, B.-H., An, Y.-T., & Jeongin, L. (2014). Influence of firing temperature on physical properties of same clay and pugu kaolin for ceramic tiles application. International Journal of Materials Science and Applications, 3(5), 143-146. https://doi.org/10.11648/j.ijmsa.20140305.12.
15. Jena, S., Sahoo, H., Rath, S. S., Rao, D. S., Das, S. K., & Das, B. (2015). Characterization and processing of iron ore slimes for recovery of iron values. Mineral Processing and Extractive Metallurgy Review, 36(3), 174-182. https://doi.org/10.1080/08827508.2014.898300.
16. Fauzi, A., & Ratnawulan, R. (2021). The effect of calcination temperature on the structure of iron oxide phase from west Sumatra. Journal of Physics: Conference Series, 1876(1), 012028. https://doi.org/10.1088/1742-6596/1876/1/012028.
17. Gu, F., Peng, Z., Zhang, Y., Tang, H., Tian, W., Lee, J., …, & Jiang, T. (2020). Promoting spinel formation and growth for preparation of refractory materials from ferronickel slag. International Journal of Applied Ceramic Technology, 17(4), 1701-1712. https://doi.org/10.1111/ijac.13481.
18. Romero-Guerrero, L., Romero-Guerrero, L. M., Moreno-Tovar, R., Arenas-Flores, A., Marmolejo Santillán, Y., & Pérez-Moreno, F. (2018). Chemical, mineralogical, and refractory characterization of kaolin in the regions of Huayacocotla-Alumbres, Mexico. Advances in Materials Science and Engineering, 2018(1). https://doi.org/10.1155/2018/8156812.
19. Badjoudj, S., Idres, A., Benselhoub, A., & Bounouala, M. (2017). Dephosphorization of oxidized iron ore from Gara Djebilet, Tindouf (Algeria). Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 43-49.
Newer news items:
- Designing the predictive control of a drum dryer using multi-agent technology - 28/08/2024 03:24
- Cumulative triangle for visual analysis of empirical data - 28/08/2024 03:24
- The right to a safe environment: economic and legal guarantees of provision in Ukraine - 28/08/2024 03:23
- Floristic and ecological structure of the landfill vegetation in the Western Forest Steppe of Ukraine - 28/08/2024 03:23
- The effect of petroleum products pollution on environmental soil condition at airport adjacent territory - 28/08/2024 03:23
- Features of the assessment of occupational risks under hazardous working conditions - 28/08/2024 03:23
- Environmental toxicity assessment of mining waste from an abandoned Zn-Pb mine - 28/08/2024 03:23
- Application of modern mathematical apparatus for determining the dynamic properties of vehicles - 28/08/2024 03:23
- Strength analysis of the model 918 wagon under non-typical bulk loads - 28/08/2024 03:23
- Justification of the criterion for optimal control of the self-grinding process of ores in drum mills - 28/08/2024 03:23
Older news items:
- Enhanced oil recovery of deposits by maintaining a rational reservoir pressure - 28/08/2024 03:23
- Implementation of a mathematical component in the device development for operational control of the dump truck - 28/08/2024 03:23
- Assessment of the contamination degree of gas pipeline branches during mined-out space degasification - 28/08/2024 03:23
- Influence of disperse-hardening additive chrome diboride on the structure of carbide matrixes of PDC drill bits - 28/08/2024 03:23
- Sorption capacity and natural gas content of coal beds of Donbas - 28/08/2024 03:23
- Influence of rock shear processes on the methane content of longwall faces - 28/08/2024 03:23
- Study of geodynamic and hydrogeological criteria for assessing the hydrocarbon potential of the Alakol depression - 28/08/2024 03:23