Algorithmic provisions for data processing under spatial analysis of risk of accidents at hazardous production facilities
- Details
- Category: Contens №6 2019
- Last Updated on 01 January 2020
- Published on 23 December 2019
- Hits: 3920
Authors:
E.I.Kabanov, Cand. Sc. (Tech.), orcid.org/0000-0001-7580-9099, Saint Petersburg Mining University, St. Petersburg, Russian Federation, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
G.I.Korshunov, Dr. Sc. (Tech.), Prof., orcid.org/0000-0001-9832-4123, Saint Petersburg Mining University, St. Petersburg, Russian Federation, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
E.B.Gridina, Cand. Sc. (Tech.), Assoc. Prof., orcid.org/0000-0002-7265-1115, Saint Petersburg Mining University, St. Petersburg, Russian Federation, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Abstract:
Purpose. Rationale of priority areas in the field of hazard analysis at hazardous production facilities (HPF) and the development of a method that allows for spatial analysis of the risk of accidents at a high level of detail.
Methodology. The authors proposed a method for processing heterogeneous information in order to identify hazardous areas for accidents, based on systematization and processing of source data using expert systems.
Findings. Using the example of spatial analysis of risk of explosion of methane-air mixture in the working area of a coal mine, the possibility of practical implementation of the proposed method was demonstrated. For this purpose, an expert system was used, which was formed on the basis of fuzzy logic inference algorithms in MATLAB Fuzzy Logic Toolbox environment, and further point interpolation was performed using the Golden Software Surfer.
Originality. Based on the model of expert system of a fuzzy logical output, relationships have been established between a numerical indicator of the risk of an accident – an explosion of a methane-air mixture, and indicators of mining, geological, mining, subjective, and organizational risk factors. The expediency of the development of separate expert systems for the analysis of individual sources of hazards in order to create a single component object environment for the implementation of comprehensive analysis of safety of HPF is substantiated.
Practical value. The work presents the rationale for the universality of the chosen methodological approach, which allows adapting expert systems for analyzing various hazards on HPF in various industries. The obtained results can be used for the timely and targeted implementation of preventive protective measures, which will be the practical use of the principles of the risk-based approach (RBA) in ensuring the safety of HPF.
References.
1. Barkan, M. Sh., & Kornev, A. V. (2018). Development of New Technological Solutions for Recovery of Heavy Nonferrous Metals fromTechnogenic Waste of Electroplating Plants and Sludge of Water Treatment Systems. Eastern-European Journal of Enterprise Technologies, 2(10-92), 17-24.
2. Filimonov, V. A., & Gorina, L. N. (2019). Development of an Occupational Safety Management System. Journal of Mining Institute, 235, 113-122.
3. Kireeva, E. V., & Kireev, M. S. (2017). Risk-oriented Approach to Design of the Industrial Safety System: Problems. Solutions. International Journal of Applied Engineering Research, 12(16), 5463-5471.
4. Voronov, S. P., Matushin, A. V., & Shlepenev, M. M. (2016). Application of risk-based approach in the state fire supervision activities. Bulletin of St. Petersburg State Fire Service University of EMERCOM of Russia, (1), 130-140.
5. Kabir, S., & Popadopoulos, Y. (2019). Applications of Bayesian Networks and Petri Nets in Safety, Reliability, and Risk Assessments: A Review. Safety Science, 115, 154-175.
6. Korshunov, G. I., Kazanin, O. I., & Rudakov, M. L. (2017). Development of Accidents Risk Assessment Techniques for Coal Mines Taking into Account Specific Conditions. Mining Informational and Analytical Bulletin, 4(5-1), 374-382.
7. Shabtai, I., & Tsah, E. (2016). A Statistical Model for Dynamic Safety Risk Control on Construction Sites. Automation in Construction, 63, 66-78.
8. Sobral, J., & Soares, C. G. (2019). Assessment of the Adequacy of Safety Barriers to Hazards. Safety Science, 114, 40-48.
9. Myasnikov, S. V., Korshunov, G. I., & Kabanov, E. I. (2018). Method of Complex Estimation and Forecast of Professional Risk of Injury of Coal Mines Personnel due to Methane and Dust Explosions. Occupational Safety in Industry, (5), 60-65.
10. Sarbayev, M., Yang, M., & Wang, H. (2019). Risk Assessment of Process Systems by Mapping Fault Tree into Artificial Neural Network. Journal of Loss Prevention in the Process Industries, 60, 203-212.
11. Yazdi, M., Hafezi, P., & Abbasi, R. (2019). A Methodology for Enhancing the Reliability of Expert System Applications in Probabilistic Risk Assessment. Journal of Loss Prevention in the Process Industries, 58, 51-59.
12. Kabanov, E. I. (2019). Expert System for Complex Express-Assessment and Forecast of Accidents Risk and Professional Risks on Coal Mines. Mining Informational and Analytical Bulletin, (4), 78-86.
13. Koulinas, G. K., Marhavilas, P. K., & Demesouka, O. E. (2019). Risk Analysis and Assessment in the Worksites Using the Fuzzy-Analytical Hierarchy Process and a Quantitative Technique – A Case Study for the Greek Construction Sector. Safety Science, 112, 96-104.
14. Nourian, R., Mousavi, S. M., & Raissi, S. (2019). A Fuzzy Expert System for Mitigation of Risks and Effective Control of Gas Pressure Reduction Stations with a Real Application.Journal of Loss Prevention in the Process Industries, 59, 77-90.
15. Urbina, A. G., & Aoyama, A. (2017). Measuring the Benefit of Investing in Pipeline Safety Using Fuzzy Risk Assessment. Journal of Loss Prevention in the Process Industries, 45, 116-132.
16. Qiu, S., Sallak, M., Schon, W., & Mingac, H. X. G. (2018). A Valuation-Based System Approach for Risk Assessment of Belief Rule-Based Expert Systems. Information Science, 466, 323-336.
17. Balovcev, S. V. (2015). Assessment of the Accidents Risk of the Excavation Sites of Coal Mines. Gorniy Zhurnal, (5), 91-93.
18. Smirnyakov, V. V., & Fien, N. M. (2018). Justification of a Methodical Approach of Aerologic Evaluation of Methane Hazard in Development Workings at Mines of Vietnam. Journal of Mining Institute, 230, 197-203.
Related news items:
Newer news items:
- Developing a technology for treating blue-green algae biomass using vibro-resonance cavitators - 23/12/2019 09:13
- The impact of mine waters on the condition of the water management complex of Ukraine: tasks of water management - 23/12/2019 09:08
- Analysis of decoupling of economic growth, environmental pressure and resource use in Dnipropetrovsk region - 23/12/2019 09:06
- The perfection of motivational model for improvement of power supply quality with using the one-way analysis of variance - 23/12/2019 09:03
- Micro business participation in government procurement: ProZorro experience - 23/12/2019 09:01
- Legal regulation of occupational safety and health in the European Union and Ukraine: a comparative approach - 23/12/2019 08:58
- Methodological approach to labor potential assessment based on the use of fuzzy sets theory - 23/12/2019 08:57
- All-weather monitoring of oil and gas production areas using satellite data - 23/12/2019 08:54
- Information technologies for power supply dispatch control based on linguistic corpus ontologies - 23/12/2019 08:52
- Control of the belt speed at unbalanced loading of the conveyor - 23/12/2019 08:50
Older news items:
- Efficiency of application of antipyrogenic materials for coating coals and coke - 23/12/2019 08:48
- Calculation of the volume of air for ventilation of mining workings when operating self-propelled diesel equipment - 23/12/2019 08:46
- Minimization of the “human factor” influence in Occupational Health and Safety - 23/12/2019 08:44
- Energy-saving control for traction frequency-regulated asynchronous engine of an electric vehicle - 23/12/2019 08:41
- Leveling of pressure flow of radial ventilator in mine ventilation system - 23/12/2019 08:38
- Creation of object-oriented model of centrifugal pump on the basis of electro-hydrodynamic analogy method - 23/12/2019 08:35
- Energy effectiveness of the differential of a device for speed change through the sun gear - 23/12/2019 08:32
- Defining the limits of application and the values of integration variables for the equations of train movement - 23/12/2019 08:30
- Physical and chemical transformations in gas coal samples influenced by the weak magnetic field - 23/12/2019 08:27
- The energy technological background of involving salty coals into energy balance of Ukraine. 2. Natural minerals as catalysts of thermochemical conversion of salty coals in various conditions - 23/12/2019 08:25