The research of industrial production dynamics based on the tools of chaos theory
- Details
- Parent Category: 2024
- Category: Content №2 2024
- Created on 01 May 2024
- Last Updated on 01 May 2024
- Published on 30 November -0001
- Written by O. Yankovyi, N. Basiurkina, H. Karpinska, L. Malyshenko, V. Chernova
- Hits: 2258
Authors:
O.Yankovyi*, orcid.org/0000-0003-2413-855X, Odesa National Economic University, Odesa, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
N.Basiurkina, orcid.org/0000-0001-9342-8863, Odesa National University of Technology, Odesa, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
H.Karpinska, orcid.org/0000-0003-4896-1866, Institute of Market And Economic & Ecological Researches of the National Academy of Sciences of Ukraine, Odesa, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
L.Malyshenko, orcid.org/0009-0006-1249-7714, Odesa Professional College of Trade and Economic, Odesa, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
V.Chernova, orcid.org/0000-0001-7142-8029, Odesa National Economic University, Odesa, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
* Corresponding author e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2024, (2): 133 - 139
https://doi.org/10.33271/nvngu/2024-2/133
Abstract:
Purpose. To prove the possibility of improving the procedure for analyzing and forecasting the dynamics of economic systems through the comprehensive use of scientific achievements of chaos theory, namely: checking the trend stability of time series, studying their phase space, attractors, Lyapunov’s chaos indicators, the maximum length of a reliable forecast of the socio-economic system development, etc.
Methodology. The methodological basis of the study is the provisions of modern economic theory, in particular, statistics, economic and mathematical modeling and forecasting, economic cybernetics and systems theory, fundamental works of foreign and domestic scientists on the issues of fractal analysis and chaos theory.
Findings. The phase and fractal analysis of the dynamics series of chain and basic growth rates of industrial production in Ukraine was carried out, and their fractal dimension was determined. The correlation function was calculated and Lyapunov’s indicators were found to assess the degree of chaotic system, Kolmogorov entropy, and the parameter of evolution in time. The maximum length of a reliable forecast and the future values of the time series were also determined.
Originality. The article substantiates the necessity and possibility of applying the methodological apparatus of chaos theory in the process of analyzing and forecasting economic dynamics, including the development of domestic industrial production.
Practical value. The value of the work is determined by the applied aspects of reliable forecasts of chain and basic growth rates of industrial production in Ukraine obtained on the basis of the chaos theory tools, the possibility of comparative analysis of the domestic industry development in “potential peacetime” and actual wartime.
Keywords: nonlinear dynamic systems, chaos theory, economic dynamics, persistence of time series
References.
1. Nayman, E. (2009). Calculation of the Hurst exponent to identify trendiness (persistence) of financial markets and macroeconomic indicators. Ekonomíst, (10), 25-29.
2. Krytsun, K. (2014). Aspects of use of fractal analysis in the currency market of Ukraine. Visnyk Kyyivskoho Natsionalnoho Universytetu imeni Tarasa Shevchenka, (7), 48-53.
3. Krytsun, K. I. (2016). Multifractal analysis of the dynamics of the stock indexes: PFTS and UX in the Ukrainian stock market. Efektyvna ekonomika, 1-8.
4. Nych, L. Ya., & Kaminskyy, R. M. (2015). Determination of Hurst index using the fractal dimension calculated by the cellular method on the example of short time series. Visnyk Natsionalnoho Universytetu Lvivska Politekhnika. Seriya: Informatsiyni systemy ta merezhi, 814(1), 100-111.
5. Harder, S. Ye., & Kornil, T. L. (2018). Fractal analysis and trend forecasting of financial time series. Visnyk Natsionalnoho Tekhnichnoho Universytetu “KHPI”. Matematychne modelyuvannya v tekhnitsi ta tekhnolohiyakh, 3(1279), 37-40. Kharkiv.
6. Kudzinovsʹkyy, A. S., & Morozyuk, A. V. (2021). Application of the Hurst parameter to study the dynamics of financial markets. POLIT. Challenges of science today, 169-170.
7. Kirichenko, L., & Radivilova, T. (2018). Estimating the self-similarity parameter for stationary stochastic processes. International Journal “Information Content and Processing”, 5(1), 41-71.
8. Yankovyі, O. G., & Honcharenko, O. M. (2012). Analysis of the sustainable development of enterprises using the normalized Hurst range method. Visnyk Vinnytskoho Politekhnichnoho Instytutu, (2), 35-38.
9. Chaykovsʹka, I. I. (2014). Fractal analysis and trends in innovative process at industrial enterprises. Ekonomichnyy chasopys-XXI, 7-8(2), 65-68.
10. Yastremsʹka, O. M., & Demchenko, H. V. (2016). Fractal analysis of the innovation activity of the industrial enterprises of Kharkiv region and trends of development. Prychornomorsʹki ekonomichni studiyi, (11), 186-190.
11. Demydenko, O. V. (2017). Fractal analysis of climatic parameters and productivity of grain crops. Visnyk ahrarnoyi nauky, (7), 10-16.
12. Kryvda, O. V., Sydorenko, Yu. V., & Romanova, D. P. (2017). Forecasting the dynamics of economic processes using the methods of fractal geometry. Ekonomichnyi Visnyk NTUU “KPI”: zbirnyk naukovykh prats, (14), 483-490. https://doi.org/10.20535/2307-5651.14.2017.108714.
13. Brovarets’, O. O., & Chovnyuk, Yu. V. (2020). The use of fractal analysis methods in the study of electrical conductivity of soils and the yield of agricultural crops. Silʹsʹkohospodarsʹki mashyny, (45), 23-33. https://doi.org/10.36910/acm.vi45.378.
14. Skalozub, V. V., Horyachkin, V. M., Klymenko, I. V., & Shapoval, D. O. (2022). Models and procedures for classification and forecasting of nondeterministic processes according to chaotic dynamics parameters. Systemni tekhnolohiyi, 3(140), 104-123. https://doi.org/10.34185/1562-9945-3-140-2022-10.
15. Tan, X. (2021). Predictive Analysis of Economic Chaotic Time Series Based on Chaotic Genetics Combined with Fuzzy Decision Algorithm. https://doi.org/10.1155/2021/5517502.
16. Bil’s’ka, O. V. (2020). Research of the behavior of national economy subjects on-line frequency request for exchange rates methods of analysis of pseudophase space. Elektronne fakhove vydannya “Efektyvna ekonomika”, (7). https://doi.org/10.32702/2307-2105-2020.7.16.
17. Serhiyenko, O. A., Mashchenko, M. A., & Baranova, V. V. (2021). Modeling the Instability of Development of Complex Hierarchical Systems. Problemy ekonomiky, 1(47), 143-154. https://doi.org/10.32983/2222-0712-2021-1-143-154.
18. Soloviev, V., Serdiuk, О., Semerikov, S., & Kiv, A. (2020). Recurrence plot-based analysis of financial-economic crashes. CEUR Workshop Proceedings, 21-40.
19. State Statistics Service of Ukraine. Retrieved from https://www.ukrstat.gov.ua/.
20. Danylov, V. Ya., Zinchenko, A. Yu., & Danilov, V. Ya. (2017). Systematic approach to solving direct and inverse problems in systems with chaos. Systemni doslidzhennya ta informatsiyni tekhnolohiyi, (2), 7-18. https://doi.org/10.20535/SRIT.2308-8893.2017.2.01.
21. Solovyov, V. M., & Stratiychuk, I. O. (2013). Use of precursor indicators of crisis phenomena of the financial market on the basis of the scale-dependent Lyapunov exponent. Problemy ekonomiky, (2), 279-283.
22. Solovyov, V. M., & Serdyuk, O. A. (2019). The models of application of the recurrence entropy and recurrence period density entropy to the analysis of complex systems dynamics. Visnyk Cherkaskoho Natsionalnoho Universytetu imeni Bohdana Khmelnytskoho, (2), 20-34. https://doi.org/10.31651/2076-5886-2019-2-20-34.
23. Tkachuk, N. (2022). Entropic processes in ensuring self-organization of the banking system. International Science Journal of Management, Economics & Finance, 1(4), 1-8. https://doi.org/10.11648/j.isjea.20220104.01.
Newer news items:
- Global investment and financing of civil construction in Ukraine under martial law - 01/05/2024 16:32
- Management of innovative development of enterprises in the conditions of digitalization: strategy modeling - 01/05/2024 16:32
- State policy in the field of employment: legal problems and prospects in the conditions of martial law - 01/05/2024 16:32
- Institutional stability of public administration: the economic and legal dimension - 01/05/2024 16:32
- Organizational-legal and accounting-analytical aspects of payroll - 01/05/2024 16:32
- Legal regulation of labor of internally displaced persons in Ukraine - 01/05/2024 16:32
- Personnel development under digital economy conditions - 01/05/2024 16:32
- Economic security of the industrial enterprise in the frameworks of business process reengineering - 01/05/2024 16:32
- Determining the parameters of the functioning for a nonlinear ballistic system in a real external environment - 01/05/2024 16:31
Older news items:
- Express bus mode as an alternative way of improving the environmental safety of cities - 01/05/2024 16:31
- Eco-friendly biosorbent based on local raw material: application to dye removal - 01/05/2024 16:31
- Basics of calculation of a two-circuit air purification system for polydisperse dust - 01/05/2024 16:31
- Electric vehicle energy consumption taking into account the route topology - 01/05/2024 16:31
- Cable line equivalent circuit parameters determination using the instantaneous power components - 01/05/2024 16:31
- Mathematical modeling of a magnetic gear for an autonomous wind turbine - 01/05/2024 16:31
- Characteristics of elasticity, frequency, and stability of plate connecting assemblies for vibrating machines - 01/05/2024 16:31
- A hybrid ICEEMDAN and OMEDA-based vibrodiagnosis method for the bearing of rolling stock - 01/05/2024 16:31
- Drilling wells taking into account the dynamic properties of rocks - 01/05/2024 16:31
- Gold recovery from waste fine carbon using acetone as solvent (Amesmessa gold mine, Algeria) - 01/05/2024 16:31