Articles

Simulation of heat transfer process in a multilateral cylindrical shell taking into account the internal heat sources

User Rating:  / 0
PoorBest 

Authors:

R. M. Tatsiy, Dr. Sc. (Phys.-Math.), Prof., Head of the Department of Applied Mathematics and Mechanics, orcid.org/0000-0001-7764-2528, Lviv State University of Life Safety, Lviv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

O. Yu. Pazen, Cand. Sc. (Tech.), Doctoral Student, orcid.org/0000-0003-1655-3825, Lviv State University of Life Safety, Lviv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

S. Ya. Vovk, Cand. Sc. (Tech.), Associate Professor , the Department of Supervision-Preventive Activity and Fire Automatics, orcid.org/0000-0001-7007-7263, Lviv State University of Life Safety, Lviv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

D. V. Kharyshyn, Cand. Sc. (Tech.), Senior Lecturer, the Department of Supervision-Preventive Activity and Fire Automatics, orcid.org/0000-0002-0927-9998, Lviv State University of Life Safety, Lviv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2020, (3): 27-32

https://doi.org/10.33271/nvngu/2020-3/027

 повний текст / full article



Abstract:

Purpose. To investigate the peculiarities of distribution of a non-stationary temperature field over the thickness of a multilayer hollow cylinder under convective heat exchange conditions on its surfaces, taking into account the presence of internal (distributed) heat sources.

Methodology. In order to achieve this goal, a direct method of solving boundary value problems of the theory of thermal conductivity was applied, which includes the application of the method of reduction, the concept of quasi derivatives, the method of separation of variables, and the modified method of Fourier eigenfunctions.

Findings. The solution of the boundary value problem was obtained in a closed form, which allowed us to create an algorithm for calculating the propagation of a non-stationary temperature field in multilayer hollow cylindrical structures under convective heat exchange on its surfaces and the presence of internal heat sources. It should be noted that such algorithms include only: a) finding the roots of the characteristic equation; b) multiplication of finite number of known (2 ´ 2) matrices; c) calculation of defined integrals; d) summing the required number of members of the series to obtain the specified accuracy. Changing the third-order boundary conditions to any other boundary conditions does not cause any significant difficulty in solving the problem.

Originality. A closed solution is obtained for the propagation of a non-stationary temperature field in a multilayer hollow cylinder in the presence of internal sources of heat and convective heat exchange on its surfaces.

Practical value. Implementation of the research results allows us to investigate the processes of heating or cooling multilayer hollow structures, taking into account the internal heat sources encountered in several applied problems. These are tasks that can be related to the processes of cooling of thermal elements of nuclear power plants, changes in the temperature field during microarray oxidation, heating of electronic components during the passage of electric current.

References.

1. Kustov, V. V., Ropyak, L. Ya., Makoviychuk, N. V., & Ostapovich, V. V. (2016). Determination of the optimal allowances for machining of parts with coatings. Metallurgical and Mining Industry, 1, 164-171.

2. Ropyak, L. Ya., Shatskyi, I. P., & Makoviichuk, M. V. (2017). Influence of the Oxide-Layer Thickness on the Ceramic–Aluminium Coating Resistance to Indentation. Metallofizika i noveishie tekhnologii, 39, 517-524. https://doi.org/10.15407/mfint.39.04.0517.

3. Wojciki, W., Alimzhanova, Zh. M., Velyamov, T. T., & Akhmetova, A. M. (2019). About one model of pumping oil mixture of different viscosities through a single pipeline in an unsteady thermal field. News of the National academy of sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences, 437, 207-214. https://doi.org/10.32014/2019.2518-170X.144.

4. Eliseev, V. N., Tovstonog, V. A., & Borovkova, T. V. (2017). Solution algorithm of generalized non-stationary heat conduction problem in the bodies of simple geometric shapes Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 1, 112-128. https://doi.org/10.18698/0236-3941-2017-1-112-128.

5. Colaço, M. J., Alves, C. J. S., & Bozzoli, F. (2015). The reciprocity function approach applied to the non-intrusive estimation of spatially varying internal heat transfer coefficients in ducts: numerical and experimental results. International Journal of Heat and Mass Transfer, 90, 1221-1231. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.028.

6. Daneshjou, K., Bakhtiari, M., Alibakhshi, R., & Fakoor, M. (2015). Transient thermal analysis in 2D orthotropic FG hollow cylinder with heat source. International Journal of Heat and Mass Transfer, 89, 977-984. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.104.

7. Yang, B., & Liu, S. (2017). Closed-form analytical solutions of transient heat conduction in hollow composite cylinders with any number of layers. International Journal of Heat and Mass Transfer, 108, 907-917. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.020.

8. Pazen, O. Yu., & Tatsii, R. M. (2017). Direct (classical) method of calculation of the temperature field in a hollow multilayer cylinder. Journal of Engineering Physics and Thermophysics, 91, 1373-1384. https://doi.org/10.1007/s10891-018-1871-3.

9. Tatsiy, R., Stasiuk, M., Pazen, O., & Vovk, S. (2018). Mo­de­ling of Boundary-Value Problems of Heat Conduction for Multilayered Hollow Cylinder. Problems of Infocommunications. Science and Technology, 21-25. https://doi.org/10.1109/INFOCOMMST.2018.8632131.

10. Shevelev, V. V. (2019). Stochastic Model of Heat Conduction with Heat Sources or Sinks. Journal of Engineering Physics and Thermophysics, 91, 614-624. https://doi.org/10.1007/s10891-019-01970-2.

Visitors

3149521
Today
This Month
All days
163
3847
3149521

Guest Book

If you have questions, comments or suggestions, you can write them in our "Guest Book"

Registration data

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Journal was registered by Ministry of Justice of Ukraine.
Registration number КВ No.17742-6592PR dated April 27, 2011.

Contacts

D.Yavornytskyi ave.,19, pavilion 3, room 24-а, Dnipro, 49005
Tel.: +38 (056) 746 32 79.
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
You are here: Home