Assessing the accuracy of modeling the tubbing erector manipulator mechanism in solidworks motion program

User Rating:  / 0
PoorBest 

Authors:


O.Panchenko*, orcid.org/0000-0002-1664-2871, Dnipro University of Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

* Corresponding author e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


повний текст / full article



Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2023, (3): 075 - 080

https://doi.org/10.33271/nvngu/2023-3/075



Abstract:



Purpose.
To estimate the calculation error in determining the kinematic and dynamic characteristics of the UT62 tubbing erector manipulator mechanism movement.


Methodology.
Modern computer analysis methods are used, which are implemented in a number of computing complexes. Due to the task complexity, a mathematical model for the manipulator mechanism fragment, which is a hydraulic cylinder with two degrees of freedom, has been developed to estimate the error of computer modeling. This model is used as a test model.


Findings.
On the example of the model study, it is shown that when simulating the mechanism movement, errors in the calculations are possible due to incorrect problem formulation, as well as to the inaccurate settings of the modules for converting the initial data. Under these circumstances, it has been concluded that when the input link movement is specified as a vector, then when determining the kinematic and dynamic characteristics of the mechanism, it is necessary to use a cubic spline in the “interpolator” module.


Originality.
For the first time, the direct problem of the manipulator mechanism dynamics has been solved, which consists in determining the static and dynamic characteristics of the device according to the given motion law of its drives. It is noted that when the motion is specified in the form of smooth analytical functions, then there is a complete coincidence of the calculation results performed by the SOLIDWORKS MOTION program with those obtained by mathematical modeling. In addition, when the mechanism link input movement is modeled as a vector, which is formed from a discontinuous function, then the cubic spline used in the “interpolator” module provides smooth harmonic functions of the movement, acceleration and jerk processes. As a result of modeling the manipulator mechanism parameters, it turned out that it is not expedient to use more than 50 points of discrete time in the research. Thus, the errors in calculating the maximum power values of the manipulator motors do not exceed 20 % for the power hydraulic cylinder and 5 % for the hydraulic motor.


Practical value.
The proposed algorithm can be used to model the movement of complex mechanisms in machines.



Keywords:
SOLIDWORKS, SOLIDWORKS MOTION, tubbing erector manipulator, discrete time, cubic spline Akima

References.


1. Samorodov, V., Bondarenko, A., Taran, I., & Klymenko, I. (2020). Power flows in a hydrostatic-mechanical transmission of a mining locomotive during the braking process. Transport Problems, 15(3), 17-28. https://doi.org/10.21307/tp-2020-030.

2. Sabraliev, N., Abzhapbarova, A., Nugymanova, G., Taran, I., & Zhanbirov, Z. (2019). Modern aspects of modeling of transport routes in Kazakhstan. News of the National Academy of Sciences of the Republic of Kazakhstan. Series of geology and technology sciences, 2, 62-68. https://doi.org/10.32014/2019.2518-170X.39.

3. Naumov, V., Taran, I., Litvinova, Y., & Bauer, M. (2020). Optimizing resources of multimodal transport terminal for material flow service. Sustainability, 12, 6545. https://doi.org/10.3390/su12166545.

4. Nadutyi, V. P., Sukharyov, V. V., & Belyushyn, D. V. (2013). Determination of stress condition of vibrating feeder for ore drawing from the block under impact loads. Metallurgical and Mining Industry, 5(1), 24-26. Retrieved from https://www.metaljournal.com.ua/assets/24Nadutyi.pdf.

5. Pivnyak, G., Samusia, V., Oksen, Y., & Radiuk, M. (2015). Efficiency increase of heat pump technology for waste heat recovery in coal mines. New Developments in Mining Engineering: Theoretical and Practical Solutions of Mineral Resources Mining, 1-4. Retrieved from https://www.researchgate.net/publication/327964391_Efficiency_increase_of_heat_pump_technology_for_waste_heat_recovery_in_coal_mines.

6. Pivnyak, G., Samusia, V., Oksen, Y., & Radiuk, M. (2014). Parameters optimization of heat pump units in mining enterprises. Progressive technologies of coal, coalbed methane and ores mining, 19-24. Retrieved from https://www.taylorfrancis.com/chapters/edit/10.1201/b17547-5/parameters-optimization-heat-pump-units-mining-enterprises-pivnyak-samusia-oksen-radiuk.

7. Ziborov, K., & Fedoriachenko, S. (2014). The frictional work in pair wheel-rail in case of different structural scheme of mining rolling stock. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 529-535. Retrieved from https://www.taylorfrancis.com/chapters/edit/10.1201/b17547-87/frictional-work-pair-wheel-rail-case-different-structural-scheme-mining-rolling-stock-ziborov-fedoriachenko.

8. Ziborov, K., & Fedoriachenko, S. (2015). On influence of additional members’ movability of mining vehicle on motion characteristics. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 237-241. Retrieved from https://www.researchgate.net/publication/327965239_On_influence_of_additional_members’_movability_of_mining_vehicle_on_motion_characteristics.

9. Protsiv, V., Ziborov, K., & Fedoriachenko, S. (2015). Test load envelope of semi – Premium O&G pipe coupling with bayonet locks. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 261-264. Retrieved from https://www.researchgate.net/publication/327965048_Test_load_envelope_of_semi_–_Premium_OG_pipe_coupling_with_bayonet_locks.

10. Ziborov, K. A., Protsiv, V. V., Fedoriachenko, S. O., & Verner, I. V. (2016). On Influence of Design Parameters of Mining Rail Transport on Safety Indicators. Mechanics, Materials Science & Engineering, 2(1), 63-70. https://doi.org/10.13140/rg.2.1.2548.5841.

11. Zabolotnyi, K., Panchenko, O., Zhupiiev, O., & Haddad, J. S. (2019). Justification of the algorithm for selecting the parameters of the elastic lining of the drums of mine hoisting machines. E3S Web of Conferences123, 01021. https://doi.org/10.1051/e3sconf/ 201912301021.

12. Zabolotnyi, K., Panchenko, O., & Zhupiiev, O. (2019). Development of the theory of laying a hoisting rope on the drum of a mining hoisting machine. E3S Web of Conferences109, 00121. https://doi.org/10.1051/e3sconf/201910900121.

13. Iljin, S., Samusya, V., Iljina, I., & Iljina, S. (2015) Influence of dynamic processes in mine winding plants on operating safety of shafts with broken geometry. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining,  425-429. Retrieved from https://www.taylorfrancis.com/chapters/edit/10.1201/b19901-73/influence-dynamic-processes-mine-winding-plants-operating-safety-shafts-broken-geometry-iljin-samusya-iljina-iljina.

14. Zabolotny, K., Sirchenko, A., & Zhupiev, O. (2015). The development of idea of tunnel unit design with the use of morphological analysis. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 175-179. Retrieved from https://www.taylorfrancis.com/chapters/edit/10.1201/b19901-36/development-idea-tunnel-unit-design-use-morphological-analysis-zabolotny-sirchenko-zhupiev.

15. Zabolotnyi, K., Zhupiiev, O., Panchenko, O., & Tipikin, A. (2020). Development of the concept of recurrent metamodeling to create projects of promising designs of mining machines. E3S Web of Conferences, 201, 01019. https://doi.org/10.1051/e3sconf/202020101019.

16. Zabolotny, K., Zhupiev, O., & Molodchenko, A. (2015). Analysis of current trends in development of mine hoists design engineering. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 175-179. Retrieved from https://www.taylorfrancis.com/chapters/edit/10.1201/b19901-31/analysis-current-trends-development-mine-hoists-design-engineering-zabolotny-zhupiev-molodchenko.

17. Zabolotnyi, K., Zhupiiev, O., & Molodchenko, A. (2017). Development of a model of contact shoe brake-drum interaction in the context of a mine hoisting machine. Mining of Mineral Deposits, 11(4), 38-45. https://doi.org/10.15407/mining11.04.038.

18. Zabolotnyi, K., & Panchenko, O. (2019). Development of methods for optimizing the parameters of the body of a fixed jaw crusher. E3S Web of Conferences209, 00120. https://doi.org/10.1051/e3sconf/ 201910900120.

 

Visitors

6317551
Today
This Month
All days
1219
52743
6317551

Guest Book

If you have questions, comments or suggestions, you can write them in our "Guest Book"

Registration data

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Journal was registered by Ministry of Justice of Ukraine.
Registration number КВ No.17742-6592PR dated April 27, 2011.

Contacts

D.Yavornytskyi ave.,19, pavilion 3, room 24-а, Dnipro, 49005
Tel.: +38 (056) 746 32 79.
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
You are here: Home Archive by issue 2023 Content №3 2023 Assessing the accuracy of modeling the tubbing erector manipulator mechanism in solidworks motion program