Electric arc spraying of cermet coatings of steel 65G-Tic system
- Details
- Category: Content №2 2021
- Last Updated on 29 April 2021
- Published on 30 November -0001
- Hits: 3908
Authors:
O.M.Dubovoy, orcid.org/0000-0002-2843-1879, Admiral Makarov National University of Shipbuilding, Mykolaiv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
A.A.Karpechenko, orcid.org/0000-0002-7543-4159, Admiral Makarov National University of Shipbuilding, Mykolaiv, Ukraine, e-mail: anton.karpechenko@ nuos.edu.ua
M.M.Bobrov, orcid.org/0000-0002-9098-6912, Admiral Makarov National University of Shipbuilding, Mykolaiv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
O.S.Gerasin, orcid.org/0000-0001-5107-9677, Admiral Makarov National University of Shipbuilding, Mykolaiv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
O.O.Lymar, orcid.org/0000-0002-0301-7313, Mykolaiv National Agrarian University, Mykolaiv, Ukraine, e-mail This email address is being protected from spambots. You need JavaScript enabled to view it.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2021, (2): 063 - 068
https://doi.org/10.33271/nvngu/2021-2/063
Abstract:
Purpose. Substantiation of the possibility of obtaining composite cermet electric arc coatings using TiC powder as a strengthening phase, determination of their physical and mechanical properties.
Methodology. The microstructure of the composite cermet electric arc coatings was studied by computer metallography using a ZEISS Gemini SEM 500 scanning electron microscope. The chemical composition was determined by X-ray spectral analysis; phases were identified by measuring their microhardness on a PMT-3 device. The bond strength of the obtained coatings was determined by the method of pulling out the pintle on a tensile testing machine UMM-5.
Findings. Composite cermet coatings of the steel 65G-TiC system were obtained by the electric arc spraying using TiC powder in a free state. The influence of the technological parameters of spraying on the amount of the carbide phase in the coating was established, and their microstructure was investigated. The porosity, microhardness of the phases in the coating and its bond strength were determined.
Originality. For the first time, composite cermet electric arc coatings of the steel 65G-TiC system were obtained by using a powder of strengthening phase in a free state. Their microstructure, microhardness and bond strength were investigated. The technological spraying modes of electric arc coatings have been established, which provide the optimal content of the strengthening phase to achieve their maximum bond strength with substrate.
Practical value. The application of the research results obtained in the work, namely, the determination of the optimal technological parameters of spraying for the formation of cermet electric arc coatings with the maximum level of physical, mechanical and operational properties, makes it possible to meet the requirements for the restoration and hardening of worn surfaces. This leads to an increase in the service life of parts not only in mining, but also in other industries.
Keywords: electric arc spraying, cermet coatings, titanium carbide
References.
1. Borisov, Y.S., Borisova, A.L., Kolomytsev, M.V., & Masyuchok, O.P. (2017). High-Velocity Air Plasma Spraying of (Ti, Cr)C32 wt.% Ni Clad Powder. Powder Metallurgy and Metal Ceramics, 56, 305-315. https://doi.org/10.1007/s11106-017-9898-0.
2. Zhu, H., Li, H., & Li, Z. (2013). Plasma sprayed TiB2Ni cermet coatings: Effect of feedstock characteristics on the microstructure and tribological performance. Surface and coating technology, 235, 620627. https://doi.org/10.1016/j.surfcoat.2013.08.040.
3. Vasileios, K., Kamnis, S., Allcock, B., & Sai, Gu (2019). Effects and interplays of spray angle and stand-off distance on the sliding wear behavior of HVOF WC-17Co coatings. Journal of thermal spray technology, 28, 514534. https://doi.org/10.1007/s11666-019-00831-x.
4. Xie, X., Yin, F., Wang, X., Ouyang, X., Li, M., & Hu, J. (2019).Corrosion Resistance to Molten Zinc of a Novel Cermet Coating Deposited by Activated Combustion High-Velocity Air Fuel (AC-HVAF). Journal of thermal spray technology, 28, 1252-1262. https://doi.org/10.1007/s11666-019-00893-x.
5. Vijay, S., Wang, L., Lyphout, L., Nylen, P., & Markocsan,N. (2019). Surface characteristics investigation of HVAF sprayed cermet coatings. Surface and coatings technology, 493, 956-962. https://doi.org/10.1016/j.apsusc.2019.07.079.
6. Fernandez, R., & Jodoin, B. (2018). Cold spray aluminumalumina cermet coatings: effect of alumina content. Journal of thermal spray technology, 27, 603-623. https://doi.org/10.1007/s11666-019-00845-5.
7. Winnicki, M., Maachowska, A., Piwowarczyk, T., Rutkowska-Gorczyca, M., & Ambroziak, A. (2016). The bond strength of Al Al2O3 cermet coatings deposited by low-pressure cold spraying. Surface and coatings technology, 16, 743-752. https://doi.org/10.1016/j.acme.2016.04.014.
8. Lima, C., Libardi, R., Camargo, R., Fals, H., & Ferraresi,V. (2014). Assessment of abrasive wear of nanostructured WC-Co and Fe-based coatings applied by HP-HVOF, flame, and wire arc spray. Journal of thermal spray technology, 23, 10971104. https://doi.org/10.1007/s11666-014-0101-6.
9. Wielage, B., Pokhmurska, H., Student, M., Gvozdeckii, V., Stupnyckyj, T., & Pokhmurskii, V. (2013). Iron-based coatings arc-sprayed with cored wires for applications at elevated temperatures. Surface and coatings technology, 220, 27-35. https://doi.org/10.1016/j.surfcoat.2012.12.013.
10. Sheppard, P., & Koiprasert, H. (2014). Effect of W dissolution in NiCrBSiWC and NiBSiWC arc sprayed coatings on wear behaviors. Surface and coatings technology, 317, 194-200. https://doi.org/10.1016/j.wear.2014.06.008.
11. Dubovyi, O.M., Karpechenko, A.A., Bobrov, M.M., & Mazurenko, A.O. (2016). Device for electric arc spraying of composite coatings. (Ukrainian Patent No. 111760). Kyiv: Ukrainian Intellectual Property Institute.
12. Dubovyi, O.M., Karpechenko, A.A., Bobrov, M.M., & Labartkava, A.V. (2020). Development of Thermal Spray Technology of Forming a Crushed Polygonization Nanosized Substructure. Metallophysics and Advanced Technologies, 4,631-653. https://doi.org/10.15407/mfint.42.05.0631.
Newer news items:
- Analysis and forecast of production and utilization of industrial waste in Ukraine - 29/04/2021 02:36
- Environmental water security policy in the EU, Ukraine and other developing countries - 29/04/2021 02:36
- Mathematical model of steel consumption minimization considering the two-stage billets cutting - 29/04/2021 02:36
- The synthesis of strategies for the efficient performance of sophisticated technological complexes based on the cognitive simulation modelling - 29/04/2021 02:36
- Enhancing energetic and economic efficiency of heating coal mines by infrared heaters - 29/04/2021 02:36
- Mathematical modeling of power supply reliability at low voltage quality - 29/04/2021 02:36
- Segmentation of heat energy consumers based on data on daily power consumption - 29/04/2021 02:36
- Determination of the cutting force components while milling cylindrical surfaces with an oriented tool - 29/04/2021 02:36
- Regularities of safe control of piston compressor units of mobile compressor stations - 29/04/2021 02:36
- Control of density and velocity of emulsion explosives detonation for ore breaking - 29/04/2021 02:36
Older news items:
- Feasibility study of exploiting gearbox oil temperature of wind turbine for improving a heat pump water heater in cold areas - 29/04/2021 02:36
- New aspects of the methodology for assessing the complexity of the structure of technological systems of the mining and metallurgical complex - 29/04/2021 02:36
- Investigation on the process of injection of commercial grade and blended fuel in a diesel engine - 29/04/2021 02:36
- Predicting changes in the sulfur content during steam coal preparation and the level of sulfur dioxide emissions when its combustion - 29/04/2021 02:36
- Coefficient of local loss of mechanical energy of the flow for a mixture of charge materials - 29/04/2021 02:36
- Determining the parameters of a natural arch while forming support load of a horizontal roadways - 29/04/2021 02:36
- Leading genetic types of base metal deposits of Rudny Altai - 29/04/2021 02:36
- The optimal method for assessing gas reserves based on the calculation of gas hydrodynamic parameters - 29/04/2021 02:36