Control of the start of high-powered electric drives with the optimization in terms of energy efficiency
- Details
- Category: Contens №5 2020
- Last Updated on 31 October 2020
- Published on 30 October 2020
- Hits: 2987
Authors:
V. Tytiuk, orcid.org/0000-0003-1077-3288, Kryvyi Rih National University, Kryvyi Rih, Ukraine, email: This email address is being protected from spambots. You need JavaScript enabled to view it.
O. Chornyi, orcid.org/0000-0001-8270-3284, Kremenchuk Mykhailo Ostrohradskyi National University, Kremenchuk, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Yu. Zachepa, orcid.org/0000-0003-4364-6904, Kremenchuk Mykhailo Ostrohradskyi National University, Kremenchuk, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
V. Kuznetsov, orcid.org/0000-0002-8169-4598, National Metallurgical Academy of Ukraine, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.; This email address is being protected from spambots. You need JavaScript enabled to view it.
M. Tryputen, orcid.org/0000-0003-4523-927X, Dnipro University of Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2020, (5): 101-108
https://doi.org/10.33271/nvngu/2020-5/101
Abstract:
Purpose. To develop engineering solutions providing the improved energy efficiency of starters of high-powered electric drives through automatic selection of the best starting settings to increment its technical-and-economic indices.
Methodology. Developing a mathematical model to determine energy efficiency index of starting sequences which is invariant relative to the electric drive type as well as a design of the starter. Planning the experiments with the use of rotatable central composite design. Analyzing extreme experimental search engine in terms of the mathematical model.
Findings. Implementation of a subsystem has been proposed to identify the integral value of expending resources as well as a cumulative effect of a starting sequence, its duration, and energy efficiency index. A variant of hardware implementation of the extreme search engine has been proposed to control the start of high-powered electric drives.
Originality. It has been defined that the proposed structure for a start control is an invariant one relative to the electric drive type and to a starter design. Availability of the unique global maximum of energy efficiency index, resulting from the controlling action and disturbing action, has been substantiated.
Practical value. Alternatives for hardware implementation of devices to identify quantitative values of some of the components of expending resources of a starting sequence, integral cost estimate of expending resources and a cumulative start results, as well as its energy efficiency index have been formulated. A structural circuit of the extreme search engine to control start of high-powered electric drives has been designed, providing performance within a region of maximum.
References.
1. Prithwiraj Purkait, & Indrayudh Bandyopadhyay (2017). Electrical Machines. Oxford University Press.
2. Nandi, A., & Ahmed, H. (2019). Condition Monitoring with Vibration Signals: Compressive Sampling and Learning Algorithms for Rotating Machine. John Wiley & Sons. https://doi.org/10.1002/9781119544678.
3. Muhammad, I. (2018). Advanced Condition Monitoring and Fault Diagnosis of Electric Machines. IGI Global. https://doi.org/10.4018/978-1-5225-6989-3.
4. Kim, H. N., Kim, J. W., Kim, M. S., Lee, B. H., & Kim, J. C. (2019). Effects of Ball Size on the Grinding Behavior of Talc Using a High-Energy Ball Mill. Minerals, 9(11), 668. https://doi.org/10.3390/min9110668.
5. Pandey, S., Bahadure, S., Kanakgiri, K., & Singh, N. M. (2016). Two-phase soft start control of three-phase induction motor. 2016 IEEE 6 th International Conference on Power Systems (ICPS), (pp. 1-6), New Delhi. https://doi.org/10.1109/ICPES.2016.7584127.
6. Shevchenko, A. A., Temlyakova, Z. S., Grechkin, V. V., & Temlyakov, A. A. (2018). The Asynchronous Motor Start Calculation with the Motor Soft Starter. XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), (pp. 410-412), Novosibirsk. https://doi.org/10.1109/APEIE.2018.8545382.
7. Deraz, S. A., & Azazi, H. Z. (2017). Current limiting soft starter for three phase induction motor drive system using PWM AC chopper. IET Power Electronics, 10(11), 1298-1306, https://doi.org/10.1049/iet-pel.2016.0762.
8. Xue Du, Ying Ye, Yuelong Wang, Lei Peng, & Suying Zhang (2018). Application of intelligent soft start in asynchronous motor. AIP Conference Proceedings, 1967(1), 020044-1–5, https://doi.org/10.1063/1.5039016.
9. Huang, L., Luo, P., Wang, C., & Zhou, X. (2019). A High Speed On-Chip Soft-Start Technique With High Start-Up Stability for Current-Mode DC-DC Converter. IEEE Access, 7, 27579-27585. https://doi.org/10.1109/ACCESS.2019.2901529.
10. Meshcheryakov, V. N., Muravyev, A. A., Boikov, A. I., & Pikalov, V. V. (2019). The Soft Starting System for an Induction Motor with an Induction Resistance in the Wound Rotor Circuit. International Multi-Conference on Industrial Engineering and Modern Technologies, (pp. 1-5). https://doi.org/10.1109/FarEastCon.2019.8934280.
11. Tytiuk, V. (2016). Analytical determination of the electromechanical system starting process efficiency index with regard to the distributed nature of input products consumption. Eastern–European Journal of Enterprise Technologies, 6/2(84), 51-59. https://doi.org/10.15587/1729-4061.2016.83203.
12. Tytiuk, V., Pozigun, O., Chornyi, O., & Berdai, A. (2017). Identification of the active resistances of the stator of an induction motor with stator windings dissymmetry. Proceedings of the International Conference on Modern Electrical and Energy Systems, MEES 2017, (pp. 48-51). https://doi.org/10.1109/MEES.2017.8248949.
13. Ptah, G. K. (2015). Valve-inductor reactive electric drive of medium and large capacity: foreign and national experience. Electrical Engineering: setevoy elektronnyy nauchnyy zhurnal, (3), 23-33.
14. Brook, R., & Arnold, G. (2018). Applied Regression Analysis and Experimental Design. Boca Raton: CRC Press, https://doi.org/10.1201/9781315137674.
15. Zagirnyak, M. V., & Branspiz, M. Yu. (2016). Experimental verification of the solution of the optimization problem for a roller lifting washer on a physical model. Visnyk Skhidnoukraiinskoho Natsionalnoho Universytetu im. V. Dalia, 12(183), 123-127.
16. Nikol’skii, M. S. (2019). Singular Sets of Extremal Controls in Extreme Control Problems. Proceedings of the Steklov Institute of Mathematics, 304, 236-240. https://doi.org/10.1134/S0081543819010164.
17. Lutsenko, I., Tytiuk, V., Oksanych, I., & Rozhnenko, Zh. (2017). Development of the method for determining extreme parameters of the process of displacement of technological objects. Eastern-European Journal of Enterprise Technologies, 6/3(90), 41-48. https://doi.org/10.15587/1729-4061.2017.116788.
18. Qudrat-Ullah, H. (2015). Decision-Making and Learning in Complex, Dynamic Tasks: An Introduction. In: Better Decision Making in Complex, Dynamic Tasks. Understanding Complex Systems. Cham: Springer. https://doi.org/10.1007/978-3-319-07986-8_1.
Related news items:
Newer news items:
- Peculiarities of formation of the country’s innovative environment based on complex analysis of resources of innovation - 30/10/2020 05:17
- Cost evaluation models of R&D products of industrial enterprises - 30/10/2020 05:15
- Methodical aspects of stability development assessment of enterprises - 30/10/2020 05:13
- Assessment of digitalization of public management and administration at the level of territorial communities - 30/10/2020 05:10
- Strategic risk management in the development of university education in Ukraine - 30/10/2020 05:07
- Rational organization of the work of an electric vehicle maintenance station - 30/10/2020 05:06
- Models of technical systems management for the forest fire prevention - 30/10/2020 05:04
- Certain topical issues of criminalization of illegal amber mining - 30/10/2020 05:02
- Efficiency of environmental taxation in European countries: comparative analysis - 30/10/2020 05:01
- Research on technology of complex processing of phosphogypsum - 30/10/2020 04:59
Older news items:
- Methods for determining the efficiency of the grinding process - 30/10/2020 04:53
- Enhancing efficiency of air distribution by swirled-compact air jets in the mine using the heat utilizators - 30/10/2020 04:51
- Recirculation power in the balance of hydraulic losses of centrifugal pump - 30/10/2020 04:50
- Experimental research on hydraulic resistance of deformed woven meshes - 30/10/2020 04:49
- Justification of rational parameters for manufacturing pump housings made of fibroconcrete - 30/10/2020 04:46
- The character of disruption of the rocks surface during rapid cooling - 30/10/2020 04:44
- Maximum surface settlement induced by shallow tunneling in layered ground - 30/10/2020 04:43
- Impact of duration of mechanochemical activation on enhancement of zinc leaching from polymetallic ore tailings - 30/10/2020 04:41
- Carbonization and crushability of structured sand-sodium-silicate mixtures - 30/10/2020 04:39
- Mathematical simulation of heat and mass exchange processes during dissociation of gas hydrates in a porous medium - 30/10/2020 04:29