Model of surface roughness in turning of shafts of traction motors of electric carst
- Details
- Category: Content №1 2020
- Last Updated on 09 April 2020
- Published on 10 March 2020
- Hits: 3115
Authors:
O.Bohdanov, Cand. Sc. (Tech.), orcid.org/0000-0003-4790-2338, Dnipro University of Technology, Dnipro, Ukraine, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.; This email address is being protected from spambots. You need JavaScript enabled to view it.
V.Protsiv, Dr. Sc. (Tech.), Prof., orcid.org/0000-0002-2269-4993, Dnipro University of Technology, Dnipro, Ukraine, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.; This email address is being protected from spambots. You need JavaScript enabled to view it.
V.Derbaba, Cand. Sc. (Tech.), Assoc. Prof., orcid.org/0000-0002-3918-2177, Dnipro University of Technology, Dnipro, Ukraine, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.; This email address is being protected from spambots. You need JavaScript enabled to view it.
S.Patsera, Cand. Sc. (Tech.), Senior Research Fellow, orcid.org/0000-0001-9137-3950, Dnipro University of Technology, Dnipro, Ukraine, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.; This email address is being protected from spambots. You need JavaScript enabled to view it.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2020, (1):41-45 https://doi.org/10.33271/nvngu/2020-1/041
Abstract:
Purpose. Research on surface roughness in turning of traction motor shaft of electric vehicles, depending on the measure of the main cutting edge angle and rounded-off radius of the cutter. Analysis of the impact of vitrified aluminum oxide disk characteristics on the surface profile after wheel dressing.
Methodology. The research was based on existing empirical dependencies that describe the profile of the workpiece surface being machined during turning and grinding. In this case, probability-theoretical methods and methods of straight-line strip chart recording before and after grinding were used.
Findings. The irregularity of the surface roughness that occurs after turning of the traction motor shaft of electric vehicles has a significant impact on the choice of geometric parameters of the cutting tool. Most often, roughness is considered as a deterministic set of irregularities of the same size and shape. There are dependencies built from the analysis of the kinematics of the treatment process and the shape of the tool cutting part. It is advisable to consider the profile of the roughness of treated surface of the part as the sum of all random deviations superimposed on an ideal geometrically calculated profile. In this case, the roughness profile will have a probabilistic character, which was formed as a result of complex stochastic processes that occur during machining. Depending on the physical phenomena that accompany the treatment process of the material, the levels of the random component should be adjusted depending on the cutting speed.
Originality. For the first time, a composite model of surface roughness is considered taking into account the influence of a random component on the geometric parameters of the cutting tool. Impact analysis of the vitrified aluminum oxide disk’s characteristics parameters on the surface profile after dressing the cutting wheel face was conducted.
Practical value. The assignments of cutting conditions, taking into account the rational parameters of the main cutting edge angle and apex spherical radius of a cutter will ensure the necessary surface quality after machining motor shaft of electric vehicles and their collector-and-brush assembly units, which will significantly affect the overall efficiency of the electro-mechanical system of the vehicle. Regularities of forming and describing the relief of a cutting wheel face will make it possible to clarify the number of active gains in the wheel-workpiece contact, the thickness of the cut by individual grains and the components of the cutting force during grinding, which will lead to an increase in the quality of processing the traction motor shaft of an electric vehicle.
References.
1. Geitner, F., & Bloch, H. (2019). Machinery Component Maintenance and Repair, (Vol. 3) (4th ed.). Gulf Professional Publishing. ISBN 978-0-12-818729-6.
2. Vorontsov, A. L., Albagachiev, A. U., & Sultan Zade, N. M. (2014). Theoretical Foundations of Metal Processing in Mechanical Engineering:monograph. Stary Oskol: TNT.
3. Glebov, V. V., Klimov, V. F., & Volosnikov, S. A. (2017). Assessment of the Possibility to Use Hybrid Electromechanical Transmission in Combat Tracked Platforms. Mechanics, Materials Science & Engineering, 8, 99-105.
4. Svietkina, O., Protsiv, V., Bohdanov, O., & Bas, K. (2018). Mechanochemical synthesis of additives for cathode material of lithium-ion traction batteries Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 80-87. https://doi.org/10.29202/nvngu/2018-6/11.
5. Protsiv, V. V., Novytskyi, O. V., & Samoilov, A. I. (2012). Advantages of magnetic loader over rail brakes on mine locomotive. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 79-83.
6. Derbaba, V. A., Zil, V. V., & Patsera, S. T. (2014). Evaluation of the adequacy of the statistical simulation modeling method while investigating the components presorting processes. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 45-50.
7. Zhuravel, O. Yu., Derbaba,V. A., Protsiv,V. V., & Patsera, S. T. (2019). Interrelation between Shearing Angles of External and Internal Friction During Chip Formation. Solid State Phenomena, (291), 193-203. https://doi.org/10.4028/www.scientific.net/SSP.291.193.
8. Strelbitsky, V. V., & Surkov, Y. E. (2017). On the issue of design models of surface roughness after turning of alloy steels. Measuring and computing in technological processes, (3), 156-159.
9. Abubakar I. Jumare, Khaled Abou-El-Hossein, Lukman N. Abdulkadir, & Muhammad M. Liman (2019). Predictive modeling and multiobjective optimization of diamond turning process of single-crystal silicon using RSM and desirability function approach. The International Journal of Advanced Manufacturing Technology, 103, 1-16. https://doi.org/10.1007/s00170-019-03816-w.
10. Grigoryev, A. Y. (2016). Physics and microgeometry of technical surfaces:monograph. Minsk: Belarusian science.
11. Masoud Pour (2018). Determining surface roughness of machining process types using a hybrid algorithm based on time series analysis and wavelet transform. The International Journal of Advanced Manufacturing Technology, 97(5-8), 2603-2619.
12. Zuperl, U., & Cus, F. (2015). Simulation and visual control of chip size for constant surface roughness. International Journal of Simulation Modelling, 14(3) – A002, 392-403.
13. Jackson, M. J. (2018). A review of the design of grinding wheels operating at excessive speeds. The International Journal of Advanced Manufacturing Technology, 94(9-12), 3979-4010.
14. Jamrozik, A., Klapiszewski, L., Strzemiecka, B., Voelkel, A., & Jesionowski, T. (2018). Additives for Abrasive Materials, Abrasive Technology. In A. Rudawska Characteristics and Applications. IntechOpen. https://doi.org/10.5772/intechopen.74822.
15. Hung, Le N., Vu Ngoc Pi, Luu Anh Tung, Hoang Xuan Tu, Gong Jun, & BanhTien Long (2018). Determination of Optimal Exchanged Grinding Wheel Diameter when Internally Grinding Alloy Tool Steel 9CrSi. IOP Conference Series: Materials Science and Engineering, 417, 012026. https://doi.org/10.1088/1757-899X/417/1/012026.
16. Taran, I., & Klymenko, I. (2017). Analysis of hydrostatic mechanical transmission efficiency in the process of wheeled vehicle braking. Transport Problems, 12 (Special Edition), 45-56. https://doi.org/10.20858/tp.12.se.4.
17. Taran, I., & Bondarenko, A. (2017). Conceptual approach to select parameters of hydrostatic and mechanical transmissions for wheel tractors designed for agrucultural opeations. Archives of transport, 41(1), 89-100. https://doi.org/10.5604/01.3001.0009.7389.
18. Kravets, V., Ziborov, K., Bas, K., & Fedoriachenko, S. (2019). Combined method for determining the optimal flow distribution plan for mining, urban electric vehicles and for charging stations. E3S Web of Conferences, 123, https://doi.org/10.1051/e3sconf/201912301029.
Newer news items:
- Development of a fiber filter for dust chambers - 10/03/2020 18:35
- DC link power supply system of electric drill - 10/03/2020 18:28
- A complex source of electrical energy for three-phase current based on a stand-alone voltage inverter - 10/03/2020 18:24
- Review of methods for energy-efficiency improvement in induction machines - 10/03/2020 18:21
- Combined control system on the basis of two discrete time equalizers - 10/03/2020 18:05
- Earth fault protection for compensated electric networks based on frequency filters - 10/03/2020 17:58
- On the efficiency factor for induction motor at non-sine supply - 10/03/2020 17:54
- Innovative technique for evaluating electric power distortion in cable transmission line - 10/03/2020 17:50
- Mathematical model of oscillations of a drill tool with a drill bit of cutting-scraping type - 10/03/2020 15:22
- Two-dimensional elastic theory methods for describing the stress state and the modes of elastic boring - 10/03/2020 15:12
Older news items:
- Modeling of the heat transfer process taking into account bursting expansion of fire-retardant coating - 10/03/2020 14:50
- Ulpa particle separation model in a spiral classifier - 10/03/2020 14:46
- Thermodynamic aspect of rock destruction - 10/03/2020 14:39
- Mathematical model of heat processes in terms of gas-saturated rock breaking by means of shearers and tunneling machines - 10/03/2020 14:32
- Contens - 10/03/2020 13:30
- Results of testing and modelling the “drilling rig with hydraulic vibrator ‒ rock” system - 10/03/2020 13:21
- Geochemical characteristics and metalogeny of Herzin granitoid complexes (Eastern Kazakhstan) - 10/03/2020 12:32