Study of aerodynamic breathing resistance of dust respirators
- Details
- Category: Environmental safety, labour protection
- Last Updated on 14 January 2015
- Published on 14 January 2015
- Hits: 4126
Authors:
V.I. Holinko, Dr. Sci. (Tech.), Professor, State Higher Educational Institution “National Mining University”, Head of the Aerology and Labour Protection Department, Dnipropetrovsk, Ukraine
S.I. Cheberiachko, Cand. Sci. (Tech.), Associate Professor, State Higher Educational Institution “National Mining University”, Assistant Lecturer of the Aerology and Labour Protection Department, Dnipropetrovsk, Ukraine
D.I. Radchuk, State Higher Educational Institution “National Mining University”, Senior Lecturer of the Aerology and Labour Protection Department, Dnipropetrovsk, Ukraine
Yu.I. Cheberiachko, Cand. Sci. (Tech.), State Higher Educational Institution “National Mining University”, Senior Lecturer of the Aerology and Labour Protection Department, Dnipropetrovsk, Ukraine
Abstract:
Purpose. Determination of the basic laws affecting the ergonomics of dust respirators.
Methodology. The evaluation of pressure difference in the respirators was carried out in accordance with DSTU EN 149:2003 (for non-reusable half masks) and DSTU EN 140:2004 (for reusable half masks). Change of pressure was determined using the special electronic gauge Testo 512. The load was simulated using the treadmill Proteus CBM-1050. The display of the treadmill shows all the parameters needed for the study (testing time, heart rate of the tester and load).
Findings. According to the DSTU EN 149:2003 we have designed the stand for determination of the breathing resistance of the dust respirators in conditions when the tester is subject to different load. We have found that the external respiration during light work can be described as harmonic vibrations, while the pressure difference in the respirators during heavy work leads to significant distortion. The proposed theoretical relationship between the pressure difference in the respirator and air velocity during inspiration and expiration does not take into account the effect of clearance pocket, changes of body position, air temperature, and uneven distribution of velocity on the filter area.
Originality. We have found that pressure drop through non-reusable filtering half masks at breathing performing light work can be described by a harmonic law, while pressure drop determination during heavy physical activity leads to significant distortion.
Practical value. We have determined of pressure drop in the dust respirators during activity of different intensity at pulsating flow. This helps to clarify the process of the pressure drop testing of the filtering half masks.
References:
1. Средства индивидуальной защиты органов дыхания: справочное руководство / Басманов П.И., Каминський С.Л., Коробейников А.В., Трубицына М.Е. – СПб.: ГИПП „Искусство России“, 2002. – 399 с.
Basmanov, P.I., Kaminskiy, S.L., Korobeynikov, A.V. and Trubitsyna, M.Ye. (2002), Sredstva individualnoy zashchity organov dykhaniya [Respiratory Protective Equipment] Reference Book, GIPP “Iskusstvo Rossii”, St. Petersburg, Russia.
2. Потапенко И.А. Эксплуатационные показатели противопылевых респираторов / И.А. Потапенко // Горноспасательное дело: сб. науч. трудовНИИГД. – Донецк, 2003. – С. 77–84.
Potapenko, I.A. (2003), “Performance criteria of dust respirators”, Gornospasatelnoye Delo, Collected articles of NIIGD, Donetsk, pp. 77–84.
3. Взаимосвязь между защитной эффективностью и общим давлением респираторов / А.А. Эннан, В.Г. Шнейдер, Н.И. Байденко, А.А. Миронов // Безопасность труда в промышленности. – 1994. – №11. –С. 11–12.
Ennan, A.A., Shneider, V.G., Baidenko, N.I. and Mironov, A.A. (1994), “Interrelation between the protective efficiency and the general pressure of respirators”, Bezopasnost Truda v Promyshlennosti, no.11, pp. 11–12.
4. Чеберячко С.И. Определение параметров фильтра респиратора в зависимости от свойств фильтрующих материалов /С.И Чеберячко// Науковий вісник НГУ. – 2002. – № 2. – С. 71–74
Cheberiachko, S.I. (2002), “Determination of parameters of the respirator filter depending on the properties of filter materials”, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, no.2, pp. 71–74.
5. Потапенко И.А. Гидродинамическое сопротивление фильтрующего элемента противопылевого респиратора / Потапенко И.А. // Горноспасательное дело: сб. науч. тр. -Донецк, НИИГД.–2010. – № 47. – С. 133–141.
Potapenko, I.A. (2010), “Hydrodynamic resistance of the filter element of dust respirator”, Gornospasatelnoye Delo, Collected articles of NIIGD, Donetsk, no. 47, pp. 133–141.
6. Аврунин О.Г. Динамическая модель процесса прохождения воздуха через носовую полость /О.Г. Аврунин, Н.И. Белецкий, А.И. Березняко // Біофізичний вісник. – 2009. – № 23(2). – С. 101–105.
Avrunin, O.G., Beletskiy, N.I. and Bereznyako, A.I. (2009), “Dynamic model of the passage of air through the nasal cavity”, Biofizychnyi Visnyk, no. 23(2), pp. 101–105.
7. Лойцянський Л.Г. Механика жидкости и газа/ Лойцянський Л.Г. – М.: „Наука“, 2003.– 904 с.
Loitsianskyi, L.G. (2003), Mekhanika zhidkosti i gaza [Fluid Mechanics], Nauka, Moscow, Russia.
8. Жданов Н.Н. Анализ принципов построения математических моделей внешнего дыхания человека / Н.Н. Жданов, А.А. Третьяков, В.Н. Назаров // Вестник ТГТУ. – 2012. – Т.18. – №4. – С. 996–1001.
Zhdanov, N.N., Tretiakov, A.A. and Nazarov, V.N., (2012) “Analysis of design principles of inner people breathing mathematic models”, Vestnik TGTU, Vol.18, no.4, pp. 996–1001.
9. Clayton, M.P., Bancroft, B. and Rajan, B. (2002), “A Review of Assigned Protection Factors of Various Types and Classes of Respiratory Protective Equipment with Reference their Measured Breathing Resistances”, The Annals of Occupational Hygiene, Vol. 46, no. 6, pp. 537–547.
2014_6_holinko | |
2015-01-13 189.6 KB 1024 |