Integration of a differential heat conduction equation to determine thermal load of a disk brake of a mine locomotive
- Details
- Category: Mining mechanics
- Last Updated on Sunday, 14 July 2013 15:31
- Published on Wednesday, 14 November 2012 11:25
- Hits: 6310
Authors:
A.G. Monya, Cand. Sci. (Tech.), Associate Professor, National Metallurgical Academy of Ukraine, Senior Lecturer, Dnipropetrovsk, Ukraine
Abstract:
Purpose. To determine analytically the temperature field arising in basic elements of a disk brake of the mine locomotive, as function of time and coordinates at performance of frictional overlays in the form of ring sector. It will allow carrying out numerical calculations of temperature in any point of the brake plate and frictional overlays at various modes of braking of the mine locomotive by the disk brake.
Methodology. For theoretical determination of temperature of elements of a brake mechanism the highest accuracy is achieved by the methods based on the analytical decision of the equation of heat conductivity. The analytical decision of a problem concerning determination of the temperature field arising in a brake disk and frictional overlays, executed in the form of ring sector of disk brake of the mine locomotive as functions of time and coordinates was resulted. For the analytical decision of the differential equation of heat conductivity in cylindrical coordinates integrated transformations of Laplas, Hankel with application of the theory of the generalized variables and a similarity method were used.
Findings. The given decision allows carrying out numerical calculations of temperature in any point of a brake disk and frictional overlays at various modes of breaking of the mine locomotive by disk brake and can be used for selection of rational parameters and working out of new designs of brake systems.
Originality. For the first time the analytical decision of a problem of non-stationary heat conductivity determination of the temperature field arising in a brake disk and frictional overlays executed in the form of ring sector of a disk brake of the mine locomotive on the basis of which the dependence of relative temperature on a surface of friction of the brake disk on time at cyclic braking was received.
Practical value. It is shown, that the maximum temperature on the friction surface of the disk reached in the end of braking becomes stable since the third cycle including braking to a full stop and dispersal. For the initial data corresponding to real working conditions of the disk brake of the mine locomotive, the maximum temperature on the friction surface of the disk does not exceed 72% from admissible value.
References:
1. Александров М.П. Грузоподъемные машины: учебн. [для студ. высш. учебн. зав.] / Александров М.П. – М.: Высшая школа, 2000. – 552 с.
Aleksandrov, M.P. (2000), Gruzopodyemnye mashiny [Load-Lifting Machines], textbook, Vysshaya shkola, Moscow, Russia.
2. Димніч А.Х. Теплопровідність: навч. посібн. [для студ. вищ. навч. закл.] / А.Х. Димніч, О.А. Троянський. – Донецьк: Донбас, 2003. – 370 с.
Dymnich, A.Kh. and Troianskyi, O.A. (2003), Teploprovidnist [Thermal Conductivity], manual for students of higher school, Donbas, Donetsk, Ukraine.
3. Белобров В.И. Тормозные системы шахтных подъемных машин / Белобров В.И., Абрамовский В.Ф., Самуся В.И. - К.: Наук. думка, 1990. - 176 с.
Belobrov, V.I., Abramovsky, V.F. and Samusya, V.I. (1990), Tormoznye sistemy shakhtnykh podyemnykh mashyn [Brake Systems of Mine Hoist Engines], Naukova dumka, Kyiv, Ukraine.
4. Моня А.Г. Тепловой режим дискового тормоза шахтного локомотива / Моня А.Г. // Металлургическая и горнорудная промышленность.- 2003.- №4.- С. 99–102.
Monia, A.G. (2003), “Thermal mode of a disk brake of the mine locomotive”, Metallurgicheskaya i gornorudnaya promyshlennost, no.4, pp. 99–102.
5. Луканин В.Н. Теплотехника: учебн. [для студ. высш. учебн. зав.] / Луканин В.Н., Шатров М.Г., Камфер Г.М. – М.: Высшая школа, 1999. – 671 с.
Lukanin, V.N., Shatrov, M.G. and Kamfer, G.M. (1999), Teplotekhnika [Heat Engineering], textbook, Vysshaya Shkola, Moscow, Russia.
6. Чичинадзе А.В. Основы трибологии (трение, износ, смазка): учебн. [для студ. высш. учебн. зав.] / Чичинадзе А.В., Браун Э.Д., Буше Н.А. – М.: Машиностроение, 2001. – 664 с.
Chichinadze, A.V., Braun, E.D. and Bushe, N.A. (2001), Osnovy tribologii (treniye, iznos, smazka) [Bases of Tribology (Friction, Wear, Oil)], textbook for students of higher school, Mashinostroenie, Moscow, Russia.
7. Тихонов А.Н. Уравнения математической физики / А.Н. Тихонов, А.А. Самарский. – М.: МГУ, 1999. – 798 с.
Tikhonov, A.N. and Samarskyi, A.A. (1999), Uravneniya matematicheskoy fiziki [Equations of Mathematical Physics], MGU, Moscow, Russia.
8. Кафтанова Ю.В. Специальные функции математической физики / Кафтанова Ю.В. – Харьков: Новое слово, 2009. – 596 с.
Kaftanova Yu.V. (2009), Spetsyalnye funktsii matematicheskoy fiziki [Special Functions of Mathematical Physics], Novoe slovo, Kharkiv, Ukraine.
9. Эйдерман В.Я. Основы теории функций комплексного переменного и операционного исчисления / Эйдерман В.Я. – М.: ФИЗМАТЛИТ, 2002. – 256 с.
Eiderman, V.Ya. (2002), [Bases of the Theory of Functions of Complex Variable and Operational Calculation], FIZMATLIT, Moscow, Russia.
monia | |
2013-07-14 330.06 KB 1715 |