Mathematical simulation of microclimate normalisation processes in deep ore mines
- Details
- Category: Ecology
- Last Updated on Thursday, 10 July 2014 13:46
- Published on Thursday, 10 July 2014 12:40
- Hits: 4471
Authors:
A.A. Lapshin, Cand. Sci. (Tech.), Associate Professor, State Higher EducationalInstitution “Kryvyi Rih National University”, Senior Lecturer of the Department of Mining Aerology and Mining Safety, Kryvyi Rih, Ukraine
Abstract:
Purpose. Prognosis of microclimate normalization processes in the air-supply mine workings of deep ore mines through the creation of mathematical model.
Methodology. Scientific analysis and synthesis of previously executed theoretical and experimental studies on issues of microclimate normalization during underground mining of ore deposits; theoretical researches and mathematical simulation of heat-exchange processes in the air-supply workings of mines; use of fundamental principles of physics, aero-and hydrodynamics, which are necessary for development of the ways of regulation the thermal regime in the deep ore mines.
Findings. The necessity of the microclimate normalization processes mathematical simulation using modern computer technology was justified. We have analyzed the known methods of mathematical simulation of heat-exchange processes in deep ore mines workings. Mathematical model of the microclimate normalization processes occurring at air motion in mine workings was constructed. It allows us to predict the state of the thermal regime with a view of its subsequent regulation.
Originality. The use of meteorological factors, including temperature, humidity, barometric pressure and water vapor condensation as the basic parameters of microclimate changes in deep mines.
Practical value. Creation of the method for mathematical simulation of heat-exchange processes occurring in the air that moves in mine workings, allowing us to adjust the thermal regime in the deep ore mines.
References:
1. Галкин. А.Ф. Тепловой режим подземных сооружений Севера / Галкин А.Ф. – Новосибирск: Наука, 2000. – 304 с.
Galkin, A.F. (2000), Teplovoy rezhym podzemnykh sooruzheniy severa [Thermal Regime of Underground Constructions at North] Science, Novosibirsk, Russia.
2. Белоцерковский О.М. Новое в численном моделировании: алгоритмы, вычислительные эксперименты, результаты / Белоцерковский О.М. – М.: Наука, 2000. – 247с.
Belotserkovskii, O.M. (2000), Novoye v chislennom modelirovanii: algoritmy, vychislitelnye eksperimenty, rezultaty [New in the Numerical Modeling: Algorithms, Computational Experiments, Results], Nauka, Moscow, Russia.
3. Самарский А.А. Математическое моделирование. Идеи. Методы. Примеры. / А.А. Самарский, А.П. Михайлов – М.: Физматлит, 2001. – 320 p.
Samarsky, A.A. and Mikhailov A.P. (2001), Matematicheskoye modelirovaniye. Idei. Metody. Primery. [Mathematical simulation. Ideas. Methods. Examples] PhysMathLit, Moscow, Russia.
4. ТрушковВ.В. Обыкновенныедифференциальныеуравнения / ТрушковВ.В. – Переславль-Залесский: Университет города Переславля, 2006. – 287с.
Trushkov, V.V. (2006), Obyknovennye differentsyalnye uravneniya [Ordinary Differential Equations: Manual for High Schools], University of Pereslavl, Pereslavl, Russia.
5. КудиновВ.А. Техническая термодинамика / В.А. Кудинов, Э.М. Карташов. – М.: Высшая школа, 2000. – 261 с.
Kudinov, V.A. and Kartashov, E.M. (2000), Tekhnicheskaya elektrodinamika [Technical thermodynamic], Vysshayashkola, Moscow, Russia.
6. Карминский В.Д. Техническая термодинамика и теплопередача / Карминский В.Д. – М.: Маршрут, 2005. – 224 с.
Karaminsky, V.D. (2005), Tekhnicheskaya termodinamika i teploperedacha [Technical Thermodynamic and Heat-Transfer], Marshrut, Moscow, Russia.
7. Бебенина Т.П. Гидравлика. Техническая гидромеханика / Бебенина Т.П. – Екатеринбург: УГГУ, 2006. – 180 с.
Bebenina, T.P. (2006), Gidravlika. Tekhnicheskaya gidromekhanika [Hydraulics. Technical hydromechanics], USMU, Ekaterinburg, Russia..
2014_3_lapshin | |
2014-07-08 423.19 KB 1333 |