Ефект підвищення опору внутрішньому зсуву бетонного полотна баластного шару залізничної колії
- Деталі
- Батьківська категорія: 2023
- Категорія: Зміст №2 2023
- Створено: 03 травня 2023
- Останнє оновлення: 03 травня 2023
- Опубліковано: 30 листопада -0001
- Автор: В. Еллер, C. Сала, М. Сисин, Д. Гаррах, Я. Лю, Ш. Фішер
- Перегляди: 2478
Authors:
В. Еллер, orcid.org/0000-0001-7253-1757, Університет Сечені Іштвана, м. Д’єр, Угорщина; Печський університет, м. Печ, Угорщина
C. Салаї, orcid.org/0000-0001-6440-1135, Університет Сечені Іштвана, м. Д’єр, Угорщина
М. Сисин, orcid.org/0000-0001-6893-0018, Інститут залізничних систем і громадського транспорту, ТУ Дрезден, м. Дрезден, Федеративна Республіка Німеччина
Д. Гаррах, orcid.org/0000-0003-4819-8506, Університет Сечені Іштвана, м. Д’єр, Угорщина
Я. Лю, orcid.org/0000-0002-4779-7761, Південно-західний університет Цзяотун, м. Чэнду, Китайська Народна Республіка
Ш. Фішер*, orcid.org/0000-0001-7298-9960, Університет Сечені Іштвана, м. Д’єр, Угорщина, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
* Автор-кореспондент e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2023, (2): 064 - 070
https://doi.org/10.33271/nvngu/2023-2/064
Abstract:
Мета. Довести, що GCCM (геосинтетичний цементний композитний матеріал) – тип Concrete Canvas є адекватним додатковим прошарком баластного шару залізничної колії. Оскільки його дренажна функція відома, у цій роботі робиться спроба довести можливість армування. Цей прошарок відносно тонкий, проте його властивості подібні до георешіток. Це основний шлях до з’ясування можливості ефекту блокування та його впливу на опір внутрішньому зсуву баластного шару залізничної колії.
Методика. Лабораторні виміри проводилися на устаткуванні «multi-level shear box», що дозволяє моделювати багаторівневий зсув баластного шару. Випробування було заплановано із прошарком Concrete Canvas і без нього. Після зсуву зразки були також випробувані на несучу здатність (E2; згідно з Угорським стандартом) і руйнування частинок. З іншого боку, поверхня контакту між нижньою частиною баласту та прошарком Concrete Canvas була виміряна за допомогою складного лазерного 3D сканера GOM ATOS і графічно за допомогою програмного забезпечення AutoCAD.
Результати. Після аналізу результатів проведених лабораторних експериментів розраховані й визначені наступні параметри: 1) коефіцієнт армування як тангенс кривих внутрішнього опору зсуву в інтервалі горизонтального зсуву 5–15 мм, а також площа під графіками інтегрування в інтервалі 0–40 мм; 2) зміна несучої здатності шаруватої структури з Concrete Canvas та без; 3) кількість цементованих частинок; 4) кількість зруйнованих частинок; 5) поверхня контакту між нижнім шаром баласту і Concrete Canvas; 6) площинність листів Concrete Canvas після зсуву. Згідно з отриманими результатами, бетонне полотно Concrete Canvas забезпечує значне посилення баластного шару залізничної колії.
Наукова новизна. Будь-який інший вид вимірювання бетонного полотна Concrete Canvas за допомогою устаткування «multi-level shear box» невідомий. Тема є унікальною.
Практична значимість. У майбутньому ці результати зможуть забезпечити вихідні дані для перевірки придатності залізобетонного полотна при його застосуванні у верхній і нижніх будовах рейкових колії для різних видів транспорту.
Ключові слова: залізниця, зношення, бетонне полотно, баластний прошарок, внутрішній опір зсуву, блокувальний ефект, GОМ АТОS
References.
1. European Commission, Mobility and Transport (2022, November 30). Retrieved from https://transport.ec.europa.eu/transport-themes/infrastructure-and-investment_en.
2. Wang, L., Song, Y., Zhang, W., & Ling, X. (2023). Condition-based inspection, component reallocation and replacement optimization of two-component interchangeable series system. Reliability Engineering & System Safety, 230, 108907. https://doi.org/10.1016/j.ress.2022.108907.
3. Goodarzi, S., Kashani, H. F., Oke, J., & Ho, C. L. (2022). Data-driven methods to predict track degradation: A case study. Construction and Building Materials, 344, 128166. https://doi.org/10.1016/j.conbuildmat.2022.128166.
4. Kovalchuk, V. V., Sysyn, M. P., Hnativ, Y. M., Onyshchenko, A., Koval, M., Tiutkin, O. L., & Parneta, M. (2021). Restoration of the bearing capacity of damaged transport constructions made of corrugated metal structures. Baltic Journal of Road and Bridge Engineering, 16(2), 90-109. https://doi.org/10.7250/bjrbe.2021-16.529.
5. Sysyn, M., Gerber, U., Kluge, F., Nabochenko, O., & Kovalchuk, V. (2020). Turnout remaining useful life prognosis by means of on-board inertial measurements on operational trains. International Journal of Rail Transportation, 8(4), 347-369. https://doi.org/10.1080/23248378.2019.1685918.
6. Wang, X., Ding, Y., Zhao, J., Ji, L., Mao, C., & Zhuang, Y. (2023). Feasibility study on the solution of replacing track slab with lateral pushing rail in one maintenance window time. Construction and Building Materials, 362, 129658. https://doi.org/10.1016/j.conbuildmat.2022.129658.
7. Kurhan, M., Kurhan, D., & Hmelevska, N. (2022). Maintenance Reliability of Railway Curves Using Their Design Parameters. Acta Polytechnica Hungarica, 19(6), 115-127. https://doi.org/10.12700/APH.19.6.2022.6.9.
8. Kuchak, A. J. T., Marinkovic, D., & Zehn, M. (2020). Finite element model updating – Case study of a rail damper. Structural Engineering and Mechanics, 73(1), 27-35. https://doi.org/10.12989/sem.2020.73.1.027.
9. Kuchak, A. J. T., Marinkovic, D., & Zehn, M. (2021). Parametric Investigation of a Rail Damper Design Based on a Lab-Scaled Model. Journal of Vibration Engineering and Technologies, 9(1), 51-60. https://doi.org/10.1007/s42417-021-00341-7.
10. Macura, D., Laketić, M., Pamučar, D., & Marinković, D. (2022). Risk Analysis Model with Interval Type-2 Fuzzy FMEA – Case Study of Railway Infrastructure Projects in the Republic of Serbia. Acta Polytechnica Hungarica, 19(3), 103-118. https://doi.org/10.12700/APH.19.3.2022.3.9.
11. Naumov, V., Zhamanbayev, B., Agabekova, D., Zhanbirov, Z., &
Taran, I. (2021). Fuzzy-logic approach to estimate the passengers preference when choosing a bus line within the public transport system. Communications – Scientific Letters of the University of Žilina, 23(3), A150-A157. https://doi.org/10.26552/com.C.2021.3.A150-A157.
12. Saukenova, I., Oliskevych, M., Taran, I., Toktamyssova, A., Aliakbarkyzy, D., & Pelo, R. (2022). Optimization of schedules for early garbage collection and disposal in the megapolis. Eastern-European Journal of Enterprise Technologies, 1(3-115), 13-23. https://doi.org/10.15587/1729-4061.2022.251082.
13. Milosevic, M., Pålsson, B., Nissen, A., Johansson, H., & Nielsen, J.C.O. (2023). Model-Based Remote Health Monitoring of Ballast Conditions in Railway Crossing Panels. In: Rizzo, P., Milazzo, A. (eds) European Workshop on Structural Health Monitoring. EWSHM 2022. Lecture Notes in Civil Engineering, 253. Springer, Cham. https://doi.org/10.1007/978-3-031-07254-3_51.
14. Czinder, B., Vásárhelyi, B., & Török, Á. (2021). Long-term abrasion of rocks assessed by micro-Deval tests and estimation of the abrasion process of rock types based on strength parameters. Engineering Geology, 282, 105996. https://doi.org/10.1016/j.enggeo.2021.105996.
15. Szabó, B., Pásthy, L., Orosz, Á., & Tamás, K. (2022). The Investigation of Additively Manufacturing and Moldable Materials to Produce Railway Ballast Grain Analogs. Frattura ed Integrità Strutturale, 60, 213-228. https://doi.org/10.3221/IGF-ESIS.60.15.
16. Rao, P. K. V., Varma, G. R. P., & Vivek, K. S. (2022). Structural dynamic analysis of freight railway wagon using finite element analysis. Materials Today: Proceedings, 66(3), 967-974. https://doi.org/10.1016/j.matpr.2022.04.770.
17. Sweta, K., & Hussaini, S. K. K. (2022). Role of particle breakage on damping, resiliency and service life of geogrid-reinforced ballasted tracks. Transportation Geotechnics, 37, 100828. https://doi.org/10.1016/j.trgeo.2022.100828.
18. Koohmishi, M. (2021). Assessment of strength of individual ballast aggregate by conducting point load test and establishment of classification method. International Journal of Rock Mechanics and Mining Sciences, 141, 104711. https://doi.org/10.1016/j.ijrmms.2021.104711.
19. Taran, I. A., & Klimenko, I. Yu. (2014). Transfer ratio of double-split transmissions in case of planetary gear input. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 60-66.
20. Samorodov, V., Bondarenko, A., Taran, I., & Klymenko, I. (2020). Power flows in a hydrostatic-mechanical transmission of a mining locomotive during the braking process. Transport Problems, 15(3), 17-28. https://doi.org/10.21307/TP-2020-030.
21. Fischer, S. (2017). Breakage test of railway ballast materials with new laboratory method. Periodica Polytechnica Civil Engineering, 61(4), 794-802. https://doi.org/10.3311/PPci.8549.
22. Eller, B., Movahedi Rad, M., & Fischer, S. (2022). Laboratory Tests and FE Modeling of the Concrete Canvas, for Infrastructure Applications. Acta Polytechnica Hungarica, 19(3), 9-20. https://doi.org/10.12700/APH.19.3.2022.3.2.
23. Szalai, S., Eller, B., Juhász, E., Movahedi, M. R., Németh, A., Harrach, D., Baranyai, G., & Fischer, S. (2022). Investigation of deformations of ballasted railway track during collapse using the Digital Image Correlation Method (DICM). Reports in Mechanical Engineering, 3(1), 258-282. https://doi.org/10.31181/rme20016032022s.
24. Hungarian Standards Institute (2003). MSZ EN 13450:2003. Aggregates for railway ballast. Retrieved from https://ugyintezes.mszt.hu/webaruhaz/szabvanyadatok?standard=109857.
25. R-Design Studio (2022, November 30). Metrology. Retrieved from http://http://r-design.hu/.
26. Lichtberger, B. (2005). Track compendium. Eurailpress Tetzlaff-Hestra GmbH & Co. KG, Hamburg.
27. International Organization for Standardization (2017). ISO 1101:2017. Geometrical product specifications (GPS) — Geometrical tolerancing — Tolerances of form, orientation, location and run-out. Retrieved from https://www.iso.org/obp/ui#iso:std:iso:1101:ed-4:v1:en.
Наступні статті з поточного розділу:
- Підвищення ефективності використання магістральної та приватної залізничної інфраструктури в умовах транспортного ринку - 03/05/2023 02:46
- Адсорбція фенолу активованим вугіллям з оливкових вичавків: моделювання та оптимізація - 03/05/2023 02:46
- Теоретико-правові аспекти регулювання еколого-земельних правовідносин в умовах воєнного стану в Україні - 03/05/2023 02:46
- Соціальна відповідальність за безпеку та здоров’я працівників на роботі - 03/05/2023 02:46
- Удосконалення процесу керування професійними ризиками за матрицею Хеддона - 03/05/2023 02:46
- Підвищення екологічної ефективності димових труб скловарних печей при застосуванні теплоутилізаційних технологій - 03/05/2023 02:46
- Інвестиційний менеджмент і фінансове забезпечення реновації інфраструктури сталого середовища - 03/05/2023 02:46
- Особливості термомодернізації системи опалення військових інфраструктурних комплексів - 03/05/2023 02:46
- Прогнозування вертикальних зсувів конструкцій інженерних будівель та споруд - 03/05/2023 02:46
- Вплив конструктивних особливостей робочого колеса на комбінований робочий процес вільновихрового насоса - 03/05/2023 02:46
Попередні статті з поточного розділу:
- Контактні напруження під підошвою жорстких фундаментів глибокого закладення і ґрунтових анкерів - 03/05/2023 02:46
- Закономірності руху аеросуміші в робочій зоні кільцевого ежектора пневмотранспортної системи - 03/05/2023 02:46
- Використання нелінійних ультразвукових вимірювань для оцінки параметрів осадження твердої фази пульпи в дешламаторі - 03/05/2023 02:46
- Вибір засобів допоміжного транспорту та адаптація їх параметрів до специфічних умов експлуатації - 03/05/2023 02:46
- Вплив підземних гірничих робіт на топографічну поверхню на прикладі вугільної шахти Нуі Бео (В’єтнам) - 03/05/2023 02:46
- Визначення технологічних показників властивостей бурових розчинів - 03/05/2023 02:46
- Геологія, магматизм і особливості мінералізації Бакирчикського рудного поля (Східний Казахстан) - 03/05/2023 02:46
- Підхід до ранжування закритих шахт відносно ефективності використання їх геотермального потенціалу - 03/05/2023 02:46
- Зв’язок тектоніки Кривбасу із природньою й техногенною сейсмічністю - 03/05/2023 02:46