Удосконалення методів моделювання перехідних процесів у трансформаторах на основі магнітоелектричних схем заміщення

Рейтинг користувача:  / 0
ГіршийКращий 

Authors:


Д. Г. Паталах, orcid.org/0000-0001-8264-8625, Національний університет «Запорізька політехніка», м. Запоріжжя, Україна, e-mail: patalakh.dmytro@gmail.com

А. М. Приходько, orcid.org/0000-0001-6258-6826, Національний університет «Запорізька політехніка», м. Запоріжжя, Україна, e-mail: stikhovod@gmail.com

К. А. Лут, orcid.org/0000-0002-9842-3540, Національний університет «Запорізька політехніка», м. Запоріжжя, Україна, e-mail: stikhovod@gmail.com

С. М. ­Тиховод, orcid.org/0000-0003-0748-1735, Національний університет «Запорізька політехніка», м. Запоріжжя, Україна, e-mail: stikhovod@gmail.com


повний текст / full article



Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2021, (6): 107 - 112

https://doi.org/10.33271/nvngu/2021-6/107



Abstract:



Мета.
Застосування вдосконаленого числового методу розрахунку перехідних процесів в електричних колах для моделювання електромагнітних процесів у нелінійних магнітоелектричних колах, а також розробка схемної моделі методу, що приводить до зручності розрахунку.


Методика.
Апроксимація функцій поліномами Чебишева, числові методи інтегрування диференціальних рівнянь, матричні методи, сплайн-інтерполяція, програмування, теорія електричних і магнітних кіл.



Результати.
На основі відомого методу аналізу перехідних процесів у лінійних електричних колах розроблено метод числового розрахунку перехідних процесів у нелінійних магнітоелектричних схемах заміщення трансформаторів. Запропонований метод дозволяє скоротити процесорний час при моделюванні електромагнітних процесів у трансформаторах. Показано приклад застосування розробленого методу. На підставі описаного методу розроблена комп’ютерна програма для моделювання перехідного електромагнітного процесу в однофазному трансформаторі. Даний приклад показав скорочення процесорного часу більш ніж у чотири рази в порівнянні з прикладами розрахунків, виконаними на підставі інших відомих методів.


Наукова новизна.
У даній роботі використовується метод, в якому рішення диференціальних рівнянь стану представлено у вигляді розкладання в ряд за ортогональними поліномами Чебишева. У роботі застосована поліноміальна апроксимація не самої функції рішення, а її похідної, що значно знижує похибку інтегрування диференціальних рівнянь. Диференціальні рівняння стану перетворюються в лінійні алгебраїчні рівняння для спеціальних зображень функцій рішення. Розроблено принцип побудови магнітоелектричних схем заміщення, в яких фігурують зображення функцій рішення. Зображення істинних динамічних струмів і магнітних потоків у запропонованій схемі заміщення інтерпретуються як постійні струми й постійні магнітні потоки. Використаний метод показав переваги в точності й часі моделювання перехідних електромагнітних процесів перед іншими відомими методами, заснованими на застосуванні магнітоелектричних схем заміщення.


Практична значимість.
Розроблений метод відкриває можливість використання апарату теорії електричних і магнітних кіл для роботи із зображеннями струмів і магнітних потоків. Розроблена комп’ютерна програма для аналізу перехідних процесів в однофазному трансформаторі. На підставі цього розробляється універсальний програмний комплекс для розрахунку перехідних процесів у трансформаторах різних конструкцій.


Ключові слова:
перехідний електромагнітний процес, диференціальні рівняння, схемна модель, поліноміальна апроксимація, поліноми Чебишева, трансформатор

References.


1. Eiichi, H., Tadashi, K., Junichi, A., & Hisatochi, I. (2016). Power System Transient Analysis: Theory and Practice using Simulation Programs (ATP-EMTP). ISBN: 978-1-118-73749-1. 280 p.

2. Akulin, A., & Suponin, A. (2017). Modeling and Advanced Circuit Analysis in PSpice. Electronics Science. Technology. Business, 82-91. https://doi.org/10.22184/1992-4178.2017.171.10.82.91.

3. Chernykh, I. V. (2014). Modeling of electrical devices in MATLAB, SimPowerSystems and Simulink. Moscow: DMK Press. St. Petersburg: Peter. Publ. SBN 5-94074-395-1 (“DMK Press”). ISBN 978-5-388-00020-О (“Peter”).

4. Bansal, R. K. (2018). Fundamentals of Numerical Methods. Oxford: Alpha Science International Ltd. ISBN 1783323604.

5. Smancer, D. S. (2019). Simulation of transients in electrical circuits of periodic non-sinusoidal current. Scientific and Practical Conference “Issues of Technical and Physical and Mathematical Sciences in the Light of Modern Studies”, 8-9(15), 5-11. Retrieved from: https://libeldoc.bsuir.by/bitstream/123456789/37109/1/Smantser_Modelirovaniye.pdf.

6. Tikhovod, S. M. (2014). Modification of magnetoelectric substitution circuits of electromagnetic devices for analysis of transient processes. Elektrichestvo, (2), 53-60. ISSN: 0013-5380. eISSN: 2411-1333.

7. Guadalupe, G. Gonzalez, & Mehrdad Ehsani (2018). Power-Invariant Magnetic System Modeling. International Journal of Magnetics and Electromagnetism, 4(1). https://doi.org/10.35840/2631-5068/6512.

8. Lambert, M., Mahseredjian, J., Martı´nez-Duró, M., & Siroi, F. (2015). Magnetic Circuits within Electric Circuits: Critical Review of Existing Methods and New Mutator Implementations. IEEE Transactions on Power Delivery. 30(6), 2427-2434. https://doi.org/10.1109/TPWRD.2015.2391231.

9. Arushanyan, O., Volchenskova, N., & Zaletkin, S. (2013). A me­thod for solving the Сauchy problem for ordinary differential equations using Chebyshev’s series. Computational methods and programming, 14, 203-214.

10. Katrich, S. A. (2015). Computing features of minimization of the error in the approximation of functions on chebyshev interpolation units. Vectnik Taganrogckogo inctituta imeni A. P. Chehova. Fiziko-matematicheckie i ectectvenn’ie nauki, (1), 67-72. ISSN 2225-501X. eISSN: 2306-2037.

11. Tokmakov, I. (2015). Modeling of electromechanical transients in asynchronous motors based on the use of Chebyshev’s polynomials. Electrical Engineering and Power Engineering, (2), 35-41. https://doi.org/10.15588/1607-6761-2015-2-5.

12. Trigub, R. (2016). Polynomials with integer coefficients and Chebyshev polynomials. Ukrainian mathematical news, 13(3), 421-448.

13. Khovanskii, A. (2013). Chebyshev’s polynomials and their appeals.  Matematicheskoye Prosveshcheniye, 17, 93-106. Retrieved from: https://www.math.toronto.edu/askold/2013%20Mat-Prosv-17%2093-106.pdf.

14. Tykhovod, S., & Patalakh, D. (2019). Calculation of Transients in Electrical Circuits at the Use of Solution Approximation by Chebyshev’s Polynomials. IEEE 20th International Conference on Computational Problems of Electrical Engineering (CPEE). ISBN Information: INSPEC Accession Number: 19247158. https://doi.org/10.1109/CPEE47179.2019.8949129.

15. Patalakh, D. (2019). Modification of numeral calculation of transients in electric circuits on basis of Chebyshev’s polynomials. Electrical Engineering and Power Engineering, (4), 11-24. https://doi.org/10.15588/1607-6761-2019-4-2.

16. Boor, C., de Höllig, K., & Riemenschneider, S. (2013). Box splines. Springer Science & Business Media. https://doi.org/10.1007/978-1-4757-2244-4_1.

17. Pankiv, V. I., Tankevich, Ye. M., & Lutchin, M. M. (2014). Approximation of the characteristics of the magnitisation of current transformers. Works of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 37, 82-90.

 

Наступні статті з поточного розділу:

Попередні статті з поточного розділу:

Відвідувачі

7623368
Сьогодні
За місяць
Всього
815
26999
7623368

Гостьова книга

Якщо у вас є питання, побажання або пропозиції, ви можете написати їх у нашій «Гостьовій книзі»

Реєстраційні дані

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Журнал зареєстровано у Міністерстві юстиції України.
Реєстраційний номер КВ № 17742-6592ПР від 27.04.2011.

Контакти

49005, м. Дніпро, пр. Д. Яворницького, 19, корп. 3, оф. 24 а
Тел.: +38 (066) 379 72 44.
e-mail: NV.NGU@ukr.net
Ви тут: Головна Авторам і читачам умови передплати UkrCat Архів журналу 2021 Зміст №6 2021 Удосконалення методів моделювання перехідних процесів у трансформаторах на основі магнітоелектричних схем заміщення