Охорона об’єктів від дії тривалих динамічних навантажень

Рейтинг користувача:  / 0
ГіршийКращий 

Authors:

О. В. Солодянкін, доктор технічних наук, професор, orcid.org/0000-0002-0837-6438, Державний вищий навчальний заклад „Національний гірничий університет“, м. Дніпро, Україна, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.; Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.; Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.

Н. М. Шепель, кандидат технічних наук, orcid.org/0000-0001-9980-5615, Державний вищий навчальний заклад „Національний гірничий університет“, м. Дніпро, Україна, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.; Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.; Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.

В. Г. Шаповал, доктор технічних наук, професор, orcid.org/0000-0003-2993-1311, Державний вищий навчальний заклад „Національний гірничий університет“, м. Дніпро, Україна, e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.; Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.; Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.

Abstract:

Мета. Обґрунтування раціональних параметрів охоронної конструкції існуючої будівлі, розташованої на лесовому ґрунті, від поверхневого джерела вібродинамічних навантажень, що дозволяє знизити крен споруди та осадки фундаменту.

Методика. Застосовані методи чисельного моделювання геомеханічних процесів для оцінки параметрів напружено-деформованого стану системи „споруда – ґрунтовий масив“.

Результати. Встановлено, що захист фундаменту будівлі, розташованої на лесовому ґрунті, від впливу поверхневого джерела динамічного навантаження забезпечується використанням віброзахисного екрану з матеріалу з модулем деформації Е 15 000 МПа. Доведено, що деформації фундаменту знижуються нелінійно при збільшенні глибини екрану від 15 до 25 м, а при глибині екрану H 20 м відбувається максимальне зниження осадки фундаменту й крену споруди. Показано, що з позицій технологічності та вартості виконання робіт, найбільш раціональним і економічно ефективним є захисний екран із ґрунтоцементних паль, що створюються за струменевою технологією закріплення ґрунтів.

Наукова новизна. Розроблена нова чисельна модель геотехнічної системи „споруда ‒ неоднорідний ґрунтовий масив“ для оцінки параметрів напружено-деформованого стану масиву лесового ґрунту, що є основою споруди. Відмінною особливістю моделі є використання значень параметрів міцності лесових ґрунтів, отриманих при тривалих динамічних випробуваннях у лабораторних умовах. Встановлені закономірності зміни напружено-деформованого стану геотехнічної системи „споруда ‒ неоднорідний ґрунтовий масив“ при впливі поверхневого джерела тривалих динамічних навантажень для різних параметрів віброзахисного екрану.

Практична значимість. Розроблена чисельна модель дозволяє проводити оцінку впливу динамічних навантажень від поверхневих джерел на об’єкти, розташовані на лесових ґрунтах. Отримані параметри захисних екранів можуть бути використані при охороні об’єктів, розташованих на лесових ґрунтах, у зоні дії динамічних навантажень від технологічного обладнання й транспорту.

References.

1. Balkin, В. М., 2013. Elements of the transport impact on buildings and structures. Their protection against traffic noise and vibration. Vestnik SGASU. Town Planning and Architecture, 3(11), рр. 44‒45.

2. Designing protection against traffic noise and vibrations of residential and public buildings. 1999 [online]. Available at: <https://znaytovar.ru/gost/2/Posobie_k_MGSN_20497_Proektiro2.html> [Accessed 11 June 2017].

3. Sedykh, А. А., 2009. Protection of buildings from vibration. Omsk scientific bulletin, 1(84), рр. 11‒14. Available at: <https://cyberleninka.ru/article/v/zaschita-zdaniy-ot-vibratsii> [Accessed 26 July 2017].

4. Volkov, A. V., Kalashnikova, N. K., Kurnavin, S. A. and Veretin, I. A., 2005. Vibration protection of buildings located near metro lines. Building materials, 9, рр. 1‒3. Available at: <http://www.mukhin.ru/stroysovet/funds/35.html> [Accessed 11 June 2017].

5. Golovko, S. I., Golovko, A. S., Gorlach, S. N., Kraymer, Y. G. and Ulyanov, V. Y., 2015. Investigation of the dynamic characteristics of buildings in the far field of the source of oscillations. Academic journal. Industrial Machine Building, Civil Engineering, 1(43), рр. 202‒207.

6. Sdvizhkova, Ye. A., Kovrov, A. S. and Kiriiak, K. K., 2014. Geomechanical assessment of landslide slope stability by finite element method. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, рр. 86‒92.

7. Sdvyzhkova, O. O., Shashenko, O. M. and Kovrov, O. S., 2010. Modelling of the rock slope stability at the controlled failure. In: Rock Mechanics in Civil and Environmental Engineering – Proceedings of the European Rock Mechanics Symposium – Switzerland: European Rock Mechanics Symposium, Lausanne: EUROCK, рр. 581‒584. Available at: <https://www.onepetro.org/conference-paper/ISRM-EUROCK-2010- 133> [Accessed 26 July 2017].

8. Karasev, M. A., 2011. Forecast of the sedimentation of the earth’s surface caused by the construction of an underground high-speed railway in the sector Sants-La Sagrera (Barcelona). News of the Higher Institutions. Mining Journal, 6, рр. 74‒79. Available at: <https://library.ru/item.asp?id=17026209> [Accessed 26 July 2017].

9. Orekhov, V. V. and Negahdar, H., 2013. Efficiency of Trench Barriers Used to Protect Structures from Dynamic Loads and Study of the Stress ‒ Strain State of Soils Based on Strain Hardening and Elastic Models. Vestnik MGSU, 3, рр. 105‒113.

10. Nejati, H. R., Ahmadi, M. and Hashemolhosseini, H., 2012. Numerical analysis of ground surface vibration induced by underground train movement. Tunnelling and Underground Space Technology, 29, рр. 1‒9.

11. Bratov, V., Petrov, Y., Semenov, B. and Darienko, I., 2015. Modelling the high-speed train induced dynamic response of railway embankment. Material Physics and Mechanics, 22, рр. 69‒77.

12. Solodyankin, O. V., Kovrov, O. S. and Ru­ban, N. M.,2015. Investigation of physical and mechanical pro­perties of subsiding soils at the Yevpatoriyskaya ravine located in the city of Dnepropetrovsk. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1,рр. 15‒20.

13. Solodyankin, A. V. and Shepel, N. N., 2015. Investigation of the strength properties of loess soils under the action of vibrodynamic loads. Modern resource-saving technologies of mining production, 2(16), рр. 32‒41.

 повний текст / full article



Відвідувачі

7491551
Сьогодні
За місяць
Всього
3099
14037
7491551

Гостьова книга

Якщо у вас є питання, побажання або пропозиції, ви можете написати їх у нашій «Гостьовій книзі»

Реєстраційні дані

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Журнал зареєстровано у Міністерстві юстиції України.
Реєстраційний номер КВ № 17742-6592ПР від 27.04.2011.

Контакти

49005, м. Дніпро, пр. Д. Яворницького, 19, корп. 3, к. 24 а
Тел.: +38 (056) 746 32 79.
e-mail: Ця електронна адреса захищена від спам-ботів. вам потрібно увімкнути JavaScript, щоб побачити її.
Ви тут: Головна Архів журналу за випусками 2018 Зміст №3 2018 Геотехнічна і гірнична механіка, машинобудування Охорона об’єктів від дії тривалих динамічних навантажень