An overview of hydrogen production via reforming from natural gas
- Details
- Category: Content №1 2024
- Last Updated on 29 February 2024
- Published on 30 November -0001
- Hits: 2174
Authors:
Duyen Quang Le*, orcid.org/0000-0001-6953-4762, Faculty of Petroleum and Energy, Hanoi University of Mining and Geology, Hanoi, the Socialist Republic of Vietnam, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Nguyen The Dzung, orcid.org/0009-0000-4018-3583, Petrography & Petrophics Department of Research & Engineering Institute, Join Venture Viet-Nga Vietsovpetro, Vung Tau, the Socialist Republic of Vietnam
* Corresponding author e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2024, (1): 092 - 099
https://doi.org/10.33271/nvngu/2024-1/092
Abstract:
Purpose. To provide an extensive analysis of hydrogen production and the major benefits as well as challenges in the hydrogen production from natural gas.
Methodology. The systematic review approach was used in this study. The first stage in a holistic evaluation is to find related significant works and specific concepts, and then apply them to search phrases and syntax. A thorough search is implemented in the Web of Science, Google Scholar, Science Direct, and Scopus databases in the English language. Moreover, the publication time of the papers is also limited in the period from 2010 to September 2023.
Findings. The literature review revealed that natural gas reforming is the most prevalent technique for producing hydrogen. The obtained results also showed that the approach based on automatic thermal reforming is less common than the one that uses natural gas to create hydrogen by steam reforming. Additionally, natural gas steam reforming has the most harmful environmental influences with regard to abiotic degradation, potential global warming, and other influence types.
Originality. This analysis offers an in-depth overview of how hydrogen is produced from natural gas as well as the benefits and limitations of the reforming method for producing hydrogen.
Practical value. From the literature review, it was found that the current preferred method for creating hydrogen is steam natural gas reforming. In addition, this review provides a comprehensive and useful resource for study, scientific advancement, and advancement in the disciplines of creating hydrogen.
Keywords: hydrogen production, natural gas, steam reforming, autothermal reforming
References.
1. Kayfeci, M., Keçebaş, A., & Bayat, M. (2019). Hydrogen production. Solar hydrogen production, 45-83. https://doi.org/10.1016/B978-0-12-814853-2.00003-5.
2. Taibi, E., Miranda, R., Vanhoudt, W., Winkel, T., Lanoix, J. C., & Barth, F. (2018). Hydrogen from renewable power: Technology outlook for the energy transition. ISBN: 978-92-9260-077-8.
3. Balat, M. (2008). Possible methods for hydrogen production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31(1), 39-50. https://doi.org/10.1080/15567030701468068.
4. Kannah, R. Y., Kavitha, S., Karthikeyan, O. P., Kumar, G., Dai-Viet, N. V., & Banu, J. R. (2021). Techno-economic assessment of various hydrogen production methods – A review. Bioresource technology, (319), 124175. https://doi.org/10.1016/j.biortech.2020.124175.
5. Mizeraczyk, J., Urashima, K., Jasiński, M., & Dors, M. (2014). Hydrogen production from gaseous fuels by plasmas – a review. International Journal of Plasma Environmental Science and Technology, 8(2), 89-97. https://doi.org/10.34343/ijpest.2014.08.02.089.
6. Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis today, 139(4), 244-260. https://doi.org/10.1016/j.cattod.2008.08.039.
7. Dash, S. K., Chakraborty, S., & Elangovan, D. (2023). A brief review of hydrogen production methods and their challenges. Energies, 16(3), 1141. https://doi.org/10.3390/en16031141.
8. Yilmaz, F., Balta, M. T., & Selbaş, R. (2016). RETRACTED: A review of solar based hydrogen production methods. Renewable and Sustainable Energy Reviews, (56), 171-178. https://doi.org/10.1016/j.rser.2015.11.060.
9. Chau, K., Djire, A., & Khan, F. (2022). Review and analysis of the hydrogen production technologies from a safety perspective. International Journal of Hydrogen Energy, 47(29), 13990-14007. https://doi.org/10.1016/j.ijhydene.2022.02.127.
10. Dincer, I., & Acar, C. (2015). Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 40(34), 11094-11111. https://doi.org/10.1016/j.ijhydene.2014.12.035.
11. Younas, M., Shafique, S., Hafeez, A., Javed, F., & Rehman, F. (2022). An overview of hydrogen production: current status, potential, and challenges. Fuel, (316), 123317. https://doi.org/10.1016/j.fuel.2022.123317.
12. Kalamaras, C. M., & Efstathiou, A. M. (2013). Hydrogen production technologies: current state and future developments. Conference papers in science, 690627. https://doi.org/10.1155/2013/690627.
13. Zhang, B., Zhang, S. X., Yao, R., Wu, Y. H., & Qiu, J. S. (2021). Progress and prospects of hydrogen production: Opportunities and challenges. Journal of Electronic Science and Technology, 19(2), 100080. https://doi.org/10.1016/j.jnlest.2021.100080.
14. Salkuyeh, Y. K., Saville, B. A., & MacLean, H. L. (2017). Techno-economic analysis and life cycle assessment of hydrogen production from natural gas using current and emerging technologies. International Journal of Hydrogen Energy, 42(30), 18894-18909. https://doi.org/10.1016/j.ijhydene.2017.05.219.
15. Ji, M., & Wang, J. (2021). Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. International Journal of Hydrogen Energy, 46(78), 38612-38635. https://doi.org/10.1016/j.ijhydene.2021.09.142.
16. Lee, D. H., Kang, H., Kim, Y., Song, H., Lee, H., Choi, J., & Song, Y. H. (2023). Plasma-assisted hydrogen generation: A mechanistic review. Fuel processing technology, 247, 107761. https://doi.org/10.1016/j.fuproc.2023.107761.
17. Usman, M., Daud, W. W., & Abbas, H. F. (2015). Dry reforming of methane: Influence of process parameters – A review. Renewable and Sustainable Energy Reviews, 45, 710-714. https://doi.org/10.1016/j.rser.2015.02.026.
18. El-Emam, R. S., Zamfirescu, C., & Gabriel, K. S. (2023). Hydrogen production pathways for Generation-IV reactors. Handbook of Generation IV Nuclear Reactors, 665-680. https://doi.org/10.1016/B978-0-12-820588-4.00025-6.
19. Yusuf, M., Bazli, L., Alam, M. A., Masood, F., Keong, L. K., Noor, A., & Abdullah, B. (2021). Hydrogen production via natural gas reforming: A comparative study between DRM, SRM and BRM techniques. Third international sustainability and resilience conference: Climate Change. Retrieved from http://scholars.utp.edu.my/id/eprint/29141.
20. Boretti, A., & Banik, B. K. (2021). Advances in hydrogen production from natural gas reforming. Advanced Energy and Sustainability Research, 2(11), 2100097. https://doi.org/10.1002/aesr.202100097.
21. Chehade, A. M. E. H., Daher, E. A., Assaf, J. C., Riachi, B., & Hamd, W. (2020). Simulation and optimization of hydrogen production by steam reforming of natural gas for refining and petrochemical demands in Lebanon. International Journal of Hydrogen Energy, 45(58), 33235-33247. https://doi.org/10.1016/j.ijhydene.2020.09.077.
22. Luk, H. T., Lei, H. M., Ng, W. Y., Yihan, J., & Lam, K. F. (2012). Techno-economic analysis of distributed hydrogen production from natural gas. Chinese Journal of Chemical Engineering, 20(3), 489-496. https://doi.org/10.1016/S1004-9541(11)60210-3.
23. Anzelmo, B., Wilcox, J., & Liguori, S. (2018). Hydrogen production via natural gas steam reforming in a Pd-Au membrane reactor. Comparison between methane and natural gas steam reforming reactions. Journal of Membrane Science, 568, 113-120. https://doi.org/10.1016/j.memsci.2018.09.054.
24. Anzelmo, B., Wilcox, J., & Liguori, S. (2017). Natural gas steam reforming reaction at low temperature and pressure conditions for hydrogen production via Pd/PSS membrane reactor. Journal of Membrane Science, 522, 343-350. https://doi.org/10.1016/j.memsci.2016.09.029.
25. Shirasaki, Y., & Yasuda, I. (2013). Membrane reactor for hydrogen production from natural gas at the Tokyo Gas Company: a case study. Handbook of Membrane Reactors, 487-507. https://doi.org/10.1533/9780857097347.2.487.
26. Shirasaki, Y., Tsuneki, T., Ota, Y., Yasuda, I., Tachibana, S., Nakajima, H., & Kobayashi, K. (2009). Development of membrane reformer system for highly efficient hydrogen production from natural gas. International Journal of Hydrogen Energy, 34(10), 4482-4487. https://doi.org/10.1016/j.ijhydene.2008.08.056.
27. García, L. (2015). Hydrogen production by steam reforming of natural gas and other nonrenewable feedstocks. Compendium of Hydrogen Energy, 83-107. https://doi.org/10.1016/B978-1-78242-361-4.00004-2.
28. Izquierdo, U., Barrio, V., Cambra, J., Requies, J., Güemez, M., Arias, P., & Arraibi, J. (2012). Hydrogen production from methane and natural gas steam reforming in conventional and microreactor reaction systems. International Journal of Hydrogen Energy, 37(8), 7026-7033. https://doi.org/10.1016/j.ijhydene.2011.11.048.
29. Ngo, S. I., Lim, Y. I., Kim, W., Seo, D. J., & Yoon, W. L. (2019). Computational fluid dynamics and experimental validation of a compact steam methane reformer for hydrogen production from natural gas. Applied Energy, 236, 340-353. https://doi.org/10.1016/j.apenergy.2018.11.075.
30. Nguyen, D. D., Ngo, S. I., Lim, Y. I., Kim, W., Lee, U. D., Seo, D., & Yoon, W. L. (2019). Optimal design of a sleeve-type steam methane reforming reactor for hydrogen production from natural gas. International Journal of Hydrogen Energy, 44(3), 1973-1987. https://doi.org/10.1016/j.ijhydene.2018.11.188.
31. Martínez, I., Romano, M. C., Chiesa, P., Grasa, G., & Murillo, R. (2013). Hydrogen production through sorption enhanced steam reforming of natural gas: Thermodynamic plant assessment. International Journal of Hydrogen Energy, 38(35), 15180-15199. https://doi.org/10.1016/j.ijhydene.2013.09.062.
32. Chen, L., Qi, Z., Zhang, S., Su, J., & Somorjai, G. A. (2020). Catalytic hydrogen production from methane: A review on recent progress and prospect. Catalysts, 10(8), 858. https://doi.org/10.3390/catal10080858.
33. Roh, H. S., Lee, D. K., Koo, K. Y., Jung, U. H., & Yoon, W. L. (2010). Natural gas steam reforming for hydrogen production over metal monolith catalyst with efficient heat-transfer. International Journal of Hydrogen Energy, 35(4), 1613-1619. https://doi.org/10.1016/j.ijhydene.2009.12.051.
34. Mosinska, M., Szynkowska, M. I., & Mierczynski, P. (2020). Oxy-steam reforming of natural gas on Ni catalysts – A minireview. Catalysts, 10(8), 896. https://doi.org/10.3390/catal10080896.
35. Bang, Y., Park, S., Han, S. J., Yoo, J., Song, J. H., Choi, J. H., & Song, I. K. (2016). Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous Ni/Al2O3 catalyst prepared by an EDTA-assisted impregnation method. Applied Catalysis B: Environmental, 180, 179-188. https://doi.org/10.1016/j.apcatb.2015.06.023.
36. Bang, Y., Seo, J. G., & Song, I. K. (2011). Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous Ni–La–Al2O3 aerogel catalysts: effect of La content. International Journal of Hydrogen Energy, 36(14), 8307-8315. https://doi.org/10.1016/j.ijhydene.2011.04.126.
37. Bang, Y., Han, S. J., Seo, J. G., Youn, M. H., Song, J. H., & Song, I. K. (2012). Hydrogen production by steam reforming of liquefied natural gas (LNG) over ordered mesoporous nickel–alumina catalyst. International Journal of Hydrogen Energy, 37(23), 17967-17977. https://doi.org/10.1016/j.ijhydene.2012.09.057.
38. Kurokawa, H., Shirasaki, Y., & Yasuda, I. (2011). Energy-efficient distributed carbon capture in hydrogen production from natural gas. Energy Procedia, 4, 674-680. https://doi.org/10.1016/j.egypro.2011.01.104.
39. Antonini, C., Treyer, K., Streb, A., van der Spek, M., Bauer, C., & Mazzotti, M. (2020). Hydrogen production from natural gas and biomethane with carbon capture and storage – A techno-environmental analysis. Sustainable Energy & Fuels, 4(6), 2967-2986. https://doi.org/10.1039/D0SE00222D.
40. Ahmed, M. T., Siddiki, S. Y. A., Khan, G. H., Kabir, K. B., & Kirtania, K. (2021). Modeling Thermodynamic and Kinetic Simulation of Hydrogen Production from Dry Reforming of Natural Gas. International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering, 1-4. https://doi.org/10.1109/IC4ME253898.2021.9768458.
41. Kathe, M. V., Empfield, A., Na, J., Blair, E., & Fan, L. S. (2016). Hydrogen production from natural gas using an iron-based chemical looping technology: Thermodynamic simulations and process system analysis. Applied Energy, 165, 183-201. https://doi.org/10.1016/j.apenergy.2015.11.047.
42. Alhamdani, Y. A., Hassim, M. H., Ng, R. T., & Hurme, M. (2017). The estimation of fugitive gas emissions from hydrogen production by natural gas steam reforming. International Journal of Hydrogen Energy, 42(14), 9342-9351. https://doi.org/10.1016/j.ijhydene.2016.07.274.
43. Cho, H. H., Strezov, V., & Evans, T. J. (2022). Environmental impact assessment of hydrogen production via steam methane reforming based on emissions data. Energy Reports, 8, 13585-13595. https://doi.org/10.1016/j.egyr.2022.10.053.
44. Zhao, P., Tamadon, A., & Pons, D. (2022). Life cycle Assessment of hydrogen production via natural gas steam reforming vs. biomass gasification. Preprints. https://doi.org/10.20944/preprints202201.0112.v1.
45. de Castro, J., Rivera-Tinoco, R., & Bouallou, C. (2010). Hydrogen production from natural gas: auto-thermal reforming and CO2 capture. Chemical Engineering, 21, 163-168. https://doi.org/10.3303/CET1021028.
46. El-Shafie, M., Kambara, S., & Hayakawa, Y. (2019). Hydrogen production technologies overview. Journal of Power and Energineering, 7(1). https://doi.org/10.4236/jpee.2019.71007.
47. Azarhoosh, M., Ale Ebrahim, H., & Pourtarah, S. (2015). Simulating and optimizing hydrogen production by low-pressure autothermal reforming of natural gas using non-dominated sorting genetic algorithm-II. Chemical and Biochemical Engineering Quarterly, 29(4), 519-531. https://doi.org/10.15255/CABEQ.2014.2158.
48. Riemer, M., & Duscha, V. (2022). Carbon Capture in Hydrogen Production-Review of Modelling Assumptions. Energy, 27, 2965. https://doi.org/10.46855/energy-proceedings-10204.
49. Oni, A., Anaya, K., Giwa, T., Di Lullo, G., & Kumar, A. (2022). Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions. Energy Conversion and Management, 254, 115245. https://doi.org/10.1016/j.enconman.2022.115245.
50. Kim, J., Park, J., Qi, M., Lee, I., & Moon, I. (2021). Process integration of an autothermal reforming hydrogen production system with cryogenic air separation and carbon dioxide capture using liquefied natural gas cold energy. Industrial & Engineering Chemistry Research, 60(19), 7257-7274. https://doi.org/10.1021/acs.iecr.0c06265.
51. Cormos, A.-M., Szima, S., Fogarasi, S., & Cormos, C. C. (2018). Economic assessments of hydrogen production processes based on natural gas reforming with carbon capture. Chemical Engineering Transactions, 70, 1231-1236. https://doi.org/10.3303/CET1870206.
52. Jaouen, N., Vervisch, L., & Domingo, P. (2017). Auto-thermal reforming (ATR) of natural gas: An automated derivation of optimised reduced chemical schemes. Proceedings of the Combustion Institute, 36(3), 3321-3330. https://doi.org/10.1016/j.proci.2016.07.110.
53. Psara, N., Van Sint Annaland, M., & Gallucci, F. (2015). Hydrogen safety risk assessment methodology applied to a fluidized bed membrane reactor for autothermal reforming of natural gas. International Journal of Hydrogen Energy, 40(32), 10090-10102. https://doi.org/10.1016/j.ijhydene.2015.06.048.
54. Iaquaniello, G., Mangiapane, A., Ciambelli, P., Palma, V., & Palo, E. (2005). Hydrogen production: autothermal reforming of light hydrocarbons coupled with innovative catalysts. World Congress of Young Scientists on Hydrogen Energy Systems, 93-97. https://doi.org/10.1615/HYSYDAYS2005.140.
55. Li, S., Kang, Q., Baeyens, J., & Deng, Y. M. (2020). Hydrogen Production: State of Technology. IOP Conference Series: Earth and Environmental Science, (544), 012011. https://doi.org/10.1088/1755-1315/544/1/012011.
56. Kaiwen, L., Bin, Y., & Tao, Z. (2018). Economic analysis of hydrogen production from steam reforming process: A literature review. Energy Sources, Part B: Economics, Planning, and Policy, 13(2), 109-115. https://doi.org/10.1080/15567249.2017.1387619.
57. Chen, S., Pei, C., & Gong, J. (2019). Insights into interface engineering in steam reforming reactions for hydrogen production. Energy & Environmental Science, 12(12), 3473-3495. https://doi.org/10.1039/C9EE02808K.
58. Faizollahzadeh Ardabili, S., Najafi, B., Shamshirband, S., Minaei Bidgoli, B., Deo, R. C., & Chau, K. W. (2018). Computational intelligence approach for modeling hydrogen production: A review. Engineering Applications of Computational Fluid Mechanics, 12(1), 438-458. https://doi.org/10.1080/19942060.2018.1452296.
59. Davies, W. G., Babamohammadi, S., Yang, Y., & Soltani, S. M. (2023). The rise of the machines: A state-of-the-art technical review on process modelling and machine learning within hydrogen production with carbon capture. Gas Science and Engineering, 118, 205104. https://doi.org/10.1016/j.jgsce.2023.205104.
60. Yu, X., Shen, Y., Guan, Z., Zhang, D., Tang, Z., & Li, W. (2021). Multi-objective optimization of ANN-based PSA model for hydrogen purification from steam-methane reforming gas. International Journal of Hydrogen Energy, 46(21), 11740-11755. https://doi.org/10.1016/j.ijhydene.2021.01.107.
Newer news items:
- Organizational and legal principles of information security of enterprises in the conditions of martial law in Ukraine - 29/02/2024 15:00
- Modeling arithmetic systems of elliptic curve cryptography using Microsoft Excel VBA - 29/02/2024 15:00
- Implementation of corporate social responsibility in the context of integration with the enterprise management information system - 29/02/2024 15:00
- Improvement of the method of time rationing for assembling car groups on one track - 29/02/2024 15:00
- Digital economy: opportunities for transformation of entepreneurial structures - 29/02/2024 15:00
- Two-stage problems of optimal location and distribution of the humanitarian logistics system’s structural subdivisions - 29/02/2024 15:00
- Modeling pH changes and electrical conductivity in surface water as a result of mining activities - 29/02/2024 15:00
- Stochastic models of work and rest schedules - 29/02/2024 15:00
- Enhancement of sorption of the azoic dye (Azucryl Red) by natural and calcined hyper-aluminous kaolins - 29/02/2024 15:00
- Method of controlling the volume of combustion products at different boiler loads - 29/02/2024 15:00
Older news items:
- Heuristic control of power consumption by up to 1000 V electrical loads at mining enterprises - 29/02/2024 15:00
- Justification of geodetic monitoring methodology of the retaining walls on the example of the embankment in Kremenchuk - 29/02/2024 15:00
- Heat exchange under the longitudinal movement of wet steam in finning heat exchangers - 29/02/2024 15:00
- Testing the fragmentation of railway ballast material by laboratory methods using Proctor compactor - 29/02/2024 15:00
- Advantages of using CONCRETE CANVAS materials in railway track construction - 29/02/2024 15:00
- Scientific bases and peculiarities of conversion of CHPP anthracite boilers to sub-bituminous coal combustion - 29/02/2024 15:00
- Influence of ice structure on vitability of frozen sand-water and sand-clay mixtures - 29/02/2024 15:00
- Improvement of the methodology for calculating the expected drilling speed with PDC chisels - 29/02/2024 15:00
- Influence of the rock mass structure and the blasting technique on blast results in the Heliopolis quarry - 29/02/2024 15:00
- The choice of optimal methods for the development of water wells in the conditions of the Tonirekshin field (Kazakhstan) - 29/02/2024 15:00