Increasing the sensitivity of measurement of a moisture content in crude oil
- Details
- Parent Category: 2021
- Category: Content №5 2021
- Created on 29 October 2021
- Last Updated on 29 October 2021
- Published on 30 November -0001
- Written by O. V. Osadchuk, A. O. Semenov, O. S. Zviahin, O. O. Semenova, A. V. Rudyk
- Hits: 5012
Authors:
O.V.Osadchuk, orcid.org/0000-0001-6662-9141, Vinnytsia National Technical University, Vinnytsia, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
A.O.Semenov, orcid.org/0000-0001-9580-6602, Vinnytsia National Technical University, Vinnytsia, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
O.S.Zviahin, orcid.org/0000-0002-5386-6057, Vinnytsia National Technical University, Vinnytsia, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
O.O.Semenova, orcid.org/0000-0001-5312-9148, Vinnytsia National Technical University, Vinnytsia, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
A.V.Rudyk, orcid.org/0000-0002-5981-3124, National University of Water and Environmental Engineering, Rivne, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2021, (5): 049 - 053
https://doi.org/10.33271/nvngu/2021-5/049
Abstract:
Purpose. Investigation of a moisture frequency transducer based on a moisture-sensitive capacitive element of a cylindrical structure with mesh electrodes for a system for measuring the amount and parameters of crude oil.
Methodology. When constructing a moisture-sensitive element, an oscillatory method for measuring humidity was applied to achieve high sensitivity and accuracy while maintaining a low cost of the device. A moisture sensitive capacitive sensor based on a cylindrical structure with mesh electrodes was introduced into the measuring generator system based on a transistor structure with a negative differential resistance.
Findings. Analytical expressions are obtained to describe the dielectric constant of an inhomogeneous mixture of water and oil. Using these equations, the capacitance of a moisture-sensitive sensor with mesh electrodes is calculated as a dependence of the moisture content of crude oil. It was determined that the capacitance of the moisture sensitive sensor increased from 20 to 44 pF when the mass moisture of crude oil changed from 0 to 30%. The sensitivity of the developed capacitive sensor is 0.8 pF/% when using a measuring device in the form of a crude oil pipeline with a diameter of 50 millimeters.
Originality. A mathematical model has been developed for the primary transducer of the moisture content of crude oil based on a cylindrical capacitor structure with net-like electrodes, which allows determining the value of the capacitance of the primary transducer of the moisture content of crude oil. A self-oscillator device for controlling the moisture content of crude oil has been developed on the basis of the structure of bipolar and field-effect transistors with a cylindrical capacitor structure with mesh electrodes.
Practical value. Circuitry solutions for a moisture transducer for crude oil have been developed. The results of experimental studies showed that for the selected version of the moisture converter circuit, the output signal frequency decreased in the range from 1.617 to 1.27 MHz with a change in the mass moisture content of the Turkmen mixture from 0 to 30%, respectively, and is close to a linear dependence. The wide frequency range of the output signal of the secondary converter with the frequency output of the measured information increases the accuracy of moisture measurement in crude oil by an order of magnitude.
Keywords: crude oil, moisture content, capacitive sensor, frequency converter, negative differential resistance, moisture sensitivity
References.
1. Bazaluk, O., Slabyi, O., Vekeryk, V., Velychkovych, A., Ropyak, L., & Lozynskyi, V. (2021). A Technology of Hydrocarbon Fluid Production Intensification by Productive Stratum Drainage Zone Reaming. Energies, 14(12), 3514. https://doi.org/10.3390/en14123514.
2. Vynnykov, Yu., Manhura, A., Zimin, O., & Matviienko, A. (2019). Use of thermal and magnetic devices for prevention of asphaltene, resin, and wax deposits on oil equipment surfaces. Mining of Mineral Deposits, 13(2), 34-40. https://doi.org/10.33271/mining13.02.034.
3. Fyk, M., Biletskyi, V., Abbood, M., Al-Sultan, M., Abbood, M., Abdullatif, H., & Shapchenko, Y. (2020). Modeling of the lifting of a heat transfer agent in a geothermal well of a gas condensate deposit. Mining of Mineral Deposits, 14(2), 66-74. https://doi.org/10.33271/mining14.02.066.
4. Bravo-Mndeza, J., Gonzlez-Velzqueza, J.L., Domnguez-Aguilarb, M.A., & Rivas-Lpeza, D.I. (2018). High-temperature corrosion of a UNS K03006 steel pipe in a crude oil vacuum residue distillation unit. Engineering Failure Analysis, 92, 149-162. https://doi.org/10.1016/j.engfailanal.2018.05.016.
5. Bharatiya, U., Gal, P., Agrawal, A., Shah, M., & Sircar, A. (2019). Effect of Corrosion on Crude Oil and Natural Gas Pipeline with Emphasis on Prevention by Ecofriendly Corrosion Inhibitors: A Comprehensive Review. Journal of Bio- and Tribo-Corrosion 5(35), 1-35. https://doi.org/10.1007/s40735-019-0225-9.
6. Trnka, P., Mentlk, V., & Svoboda, M. (2014). The effect of moisture content on electrical insulating liquids. 2014 IEEE 18th International Conference on Dielectric Liquids (ICDL), 1-4. https://doi.org/10.1109/ICDL.2014.6893120.
7. Liu, H., Tang, X., Lu, H., Xie, W., Hu, Y., & Xue, Q. (2020). An interdigitated impedance microsensor for detection of moisture content in engine oil. Nanotechnology and Precision Engineering, 3(2), 75-80. https://doi.org/10.1016/j.npe.2020.04.001.
8. Ab Ghani, S., Abu Bakar, N., Chairul, I.S., Ahmad Khiar, M.S., & Ab Aziz, N.H. (2020). Effects of Moisture Content and Temperature on the Dielectric Strength of Transformer Insulating Oil. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 63(1), 107-116.
9. Tan, C., Zhang, Z., Feng, G., Li, B., Wu, H., & Tan, T. (2019). Research on Measurement Model of Water Content of Oil Well Based on Data Fusion. 2019 International Conference on Intelligent Computing, Automation and Systems (ICICAS), 44-47. https://doi.org/10.1109/ICICAS48597.2019.00018.
10. Yi, L., Ding, J., & Liu, C. (2019). NMR principle analysis based object detection for intelligent measurement of crude oil moisture content. 12th Asian Control Conference (ASCC), 456-461.
11. Ren, G., Ge, D., Sun, K., Chen, X., Mi, L., & Yao, X. (2020). A Novel Method of Crude Oil Water-Cut Detection Based on Multi-Sensor Fusion. International Petroleum Technology Conference. https://doi.org/10.2523/IPTC-20216-Abstract.
12. Dong, P., Zeng, X., Duan, C., Wang, T., Luo, S., Wang, P., , & Zhao, H. (2020). Error Correction Method of Crude Oil Moisture Content Detection Based on BP Neural Network, IOP Conference Series: Earth and Environmental Science, 558, 022005, 1-12. https://doi.org/10.1088/1755-1315/558/2/022005.
13. Osadchuk, A.V., Semenov, A.A., Zviahin, O.S., Savytskyi, A.Y., Komada, P., & Nurseitova, K. (2019). Numerical method for processing frequency measuring signals from microelectronic sensors based on transistor structures with negative differential resistance. Proceedings of SPIE, 11176, 111765Y. https://doi.org/10.1117/12.2536942.
14. Varavallo, R., Moreira, V.M., Paes, V., Brito, P., Olivas, J., & Pinto, H.C. (2014). Microstructure and residual stress analysis of explosion cladded inconel 625 and ASME SA516-70 carbon steel bimetal plates. Advanced Materials Research, (996), 494-499. https://doi.org/10.4028/www.scientific.net/AMR.996.494.
15. Xiong, C.Y. (2012). Design and Application of Time-Domain Transmission Moisture Content of Crude Oil Sensor. Advanced Materials Research, (542-543), 928-932. https://doi.org/10.4028/www.scientific.net/amr.542-543.928.
16. Bian, X.N., He W., & Han, H.Y. (2010). Design of Capacitance Sensors Circuit. 2010 Symposium on Photonics and Optoelectronics, 1-4. https://doi.org/10.1109/SOPO.2010.5504236.
17. Korkua, S.K., & Sakphrom, S. (2020). Low-cost capacitive sensor for detecting palm-wood moisture content in real-time. Heliyon, 6(8), e04555, 1-7. https://doi.org/10.1016/j.heliyon.2020.e04555.
18. Makeev, Y.V., Lifanov, A.P., & Sovlukov, A.S. (2014). Microwave measurement of water content in flowing crude oil with improved accuracy. 24th International Crimean Conference Microwave & Telecommunication Technology, 956-957. https://doi.org/10.1109/CRMICO.2014.6959712.
19.Semenov, A.O., Baraban, S.V., Osadchuk, O.V., Semenova,O.O., Koval, K.O., & Savytskyi, A.Y. (2019). Microelectronic Pyroelectric Measuring Transducers. 4th International Conference on Nanotechnologies and Biomedical Engineering, 393-397. https://doi.org/10.1007/978-3-030-31866-6_72.
20. Osadchuk, A.V., Semenov, A.A., Baraban, S.V., Semenova,E.A., & Koval, K.O. (2013). Noncontact infrared thermometer based on a self-oscillating lambda type system for measuring the human bodys temperature, Microwave and Telecommunication Technology, 1069-1070.
Newer news items:
- Improvement of methodology of justification of safe routes for transportation of dangerous substances and cargo - 29/10/2021 02:08
- Choosing injectable solution for auger technology of underground space protection against pollution - 29/10/2021 02:08
- Validation of the operation efficiency criteria for geothermal probes in flooded mine workings - 29/10/2021 02:08
- Influence of diesel vehicles on the biosphere - 29/10/2021 02:08
- Current state and forecast of sulfur dioxide and dust emissions at thermal power plants of Ukraine - 29/10/2021 02:08
- Mathematical modeling of wave processes in two-winding transformers taking into account the main magnetic flux - 29/10/2021 02:08
- Simulation of industrial solar photovoltaic station with transformerless converter system - 29/10/2021 02:08
- Determination of vertical dynamics for a standard Ukrainian boxcar with Y25 bogies - 29/10/2021 02:08
- Elastic, inelastic and time constant measurement for M102 (AL–C–O) dispersions-reinforced aluminum alloys - 29/10/2021 02:08
- Signal processing application for vibration generated by blasting in tunnels - 29/10/2021 02:08
Older news items:
- Formation mechanisms of maximal loads on cutters and cutting heads of coal mining machines - 29/10/2021 02:08
- Determination of adhesion stages of the Fe-Ni ore at the Ferronikeli plant in Drenas - 29/10/2021 02:08
- Calculation of the overburden ratio by the method of financial and mathematical averaged costs - 29/10/2021 02:08
- Surface modelling by geoid determination for flood control of Ewekoro limestone deposit (Nigeria) - 29/10/2021 02:08
- Mineralization of rare metals in the lakes of East Kazakhstan - 29/10/2021 02:08
- Tectonic factors of impurity elements accumulation at the Shubarkol coal deposit (Kazakhstan) - 29/10/2021 02:08
- Feature space of the Atasu type deposits (Сentral Kazakhstan) - 29/10/2021 02:08