An approach for ranking abandoned mines by the efficient use of their geothermal potential

User Rating:  / 0


D.V.Rudakov*,, Dnipro University of Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

O.V.Inkin,, Dnipro University of Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

* Corresponding author email: This email address is being protected from spambots. You need JavaScript enabled to view it.

повний текст / full article

Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2023, (2): 011 - 018


To develop an approach for ranking abandoned mines in terms of the efficiency of mine water heat recovery by geothermal systems through applying the set of basic criteria; they allow considering geological and mining conditions in first approximation and preliminary assessing the performance of the systems located on them.

The proposed approach includes the ranking of mines by five basic indicators usually available or easily calculated such as the conversion factor of heat pumps COP, energy balance, thermal capacity, profit of operation, and reduction of CO2 emissions. The energy balance introduced by the authors earlier is defined as the relation of thermal energy produced to the thermal equivalent of electricity required for operation. These indicators are integrated in the complex rank to compare the expected performance and generate the priority lists for industrial installations in mines.

We ranked 27 abandoned coal mines in Donbas with available data by five indicators separately and the complex parameter defined through averaging their contributions. The top promising sites for open non-circulation, circulation, and closed loop systems in terms of efficient heat recovery were identified. These sites refer to mostly deep mines in the central part of Donbas with the enhanced geothermal gradient over 0.03 °C/m.

Firstly, an approach to evaluate the geothermal potential and ranking the mines regarding the efficiency of thermal energy use based on existing and introduced performance indicators has been substantiated and validated for a group of abandoned mines. The developed technique allows-analyz and preliminary quantify the feasibility of geothermal installations of different design.

Practical value.
The proposed approach for ranking post-mining sites enables generating the priority lists with regard to recovery of low-grade energy from mine water, thus, identifying the geothermal potential and most promising sites for further detailed feasibility studies and operation of geothermal systems of various types.

abandoned mines, mine water, geothermal systems, heat recovery, operation efficiency, ranking


1. Rudakov, D., Inkin, O., Dereviahina, N., & Sotskov, V. (2020). Effectiveness evaluation for geothermal heat recovery in closed mines of Donbas. E3S Web of Conferences 201, 01008. Ukrainian School of Mining Engineering, 1-10.

2. Sadovenko, I., Rudakov, D., & Inkin, O. (2014). Geotechnical schemes to the multi-purpose use of geothermal energy and resources of abandoned mines. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 443-450. eBook ISBN 9780429226946.

3. LANUV NRW (2018). Landesamt für Natur, Umwelt, und Verbraucherschutz Nordrhein-Westfahlen: Potenzialstudie warmes Grubenwasser – Fachbericht 90. Recklinghausen. Retrieved from

4. Banks, D., Athresh, A., Al-Habaibeh, A., & Burnside, N. (2019). Water from abandoned mines as a heat source: practical experiences of open- and closed-loop strategies, United Kingdom. Sustainable Water Resources Management, 5, 29-50.

5. Loredo, C., Roqueñí, N., & Ordóñez, A. (2016). Modelling flow and heat transfer in flooded mines for geothermal energy use: A review. International Journal of Coal Geology, 164, 115-122.

6. Burnside, N. M., Banks, D., & Boyce, A. J. (2016). Sustainability of thermal energy production at the flooded mine workings of the former Caphouse Colliery, Yorkshire, United Kingdom. International Journal of Coal Geology, 164, 85-91.

7. Ni, L., Dong, J., Yao, Y., Shen, C., Qv, D., & Zhang, X. (2015). A review of heat pump systems for heating and cooling of buildings in China in the last decade. Renewable Energy, 84, 30-45.

8. Gillespie, M.R., Cran, E.J., & Barron, H.F. (2013). Deep geothermal energy potential in Scotland British Geological Survey Geology and Landscape, Scotland Programme. Commissioned Report Cr/12/131. Retrieved from

9. Bongole, K., Sun, Z., & Yao, J. (2021). Potential for geothermal heat mining by analysis of the numerical simulation parameters in proposing enhanced geothermal system at Bongor Basin, Chad. Simulation Modelling Practice and Theory, 107, 102218.

10. Bao, T., Cao, H., Qin, Y., Jiang, G., & Liu, Z.L. (2020). Critical insights into thermohaline stratification for geothermal energy recovery from flooded mines with mine water. Journal of Cleaner Production, 273, 122989.

11. Kucheryava, I. M., & Sorokina, N. L. (2020). Renewable energy in the world and Ukraine as of 2019 – beginning of 2020. Hidroenerhetyka Ukrainy, 1, 38-44.

12. Viessman Planungshandbuch (2011). Wärmepumpen. Viessman GmbH. Retrieved from

13. Pivnyak, G., Samusia, V., Oksen, Y., & Radiuk, M. (2015). Efficiency increase of heat pump technology for waste heat recovery in coal mines. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 1-4.

14. Sadovenko, I., Inkin, O., Dereviahina, N., & Khryplyvets, Y. (2019). Actualization of prospects of thermal usage of groundwater of mines during liquidation. E3S Web of Conferences, 123, 01046.

15. Marchenko, M., & Kharzhevskyi, V. (2020). Parametric optimization of hydrodynamic and thermal parameters of heat exchange equipment based on similarity theory and dimensional analysis. Herald of Khmelnytskyi National University, 5, 172-176.

16. Dolinskyi, A. A., & Khalatov, A. A. (2016). Geothermal energy: production of electric and thermal energy. Visnyk NAN Ukrainy, 11, 76-78.

17. Gordienko, V., Gordienko, I., & Zavgorodnyaya, O. (2015). Thermal field of Donbas. Institute of geophysics of NAS of Ukraine, 37(1), 3-23.

18. Dzikovska, Y., & Gots, N. (2015). Method of determining the heat loss of the building according to the results of thermal vision research. Measuring technique and metrology, 76, 59-66.

19. Rudakov, D., & Westermann, S. (2021). Analytical modeling of mine water rebound: Three case studies in closed hard-coal mines in Germany. Mining of Mineral Deposits, 15(3), 22-30.

20. Fomin, V. O. (2015). Forecasting changes in the inflow of groundwater into a liquidated mine. Ugol Ukrainyi, 5, 20-24.



This Month
All days

Guest Book

If you have questions, comments or suggestions, you can write them in our "Guest Book"

Registration data

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Journal was registered by Ministry of Justice of Ukraine.
Registration number КВ No.17742-6592PR dated April 27, 2011.


D.Yavornytskyi ave.,19, pavilion 3, room 24-а, Dnipro, 49005
Tel.: +38 (056) 746 32 79.
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
You are here: Home Cooperation Partners EngCat Archive 2023 Content №2 2023 An approach for ranking abandoned mines by the efficient use of their geothermal potential