Ways to reduce hydraulic losses in multistage centrifugal pumping equipment for mining and oil-producing industries
- Details
- Category: Content №6 2021
- Last Updated on 29 December 2021
- Published on 30 November -0001
- Hits: 5409
Authors:
G.Akanova, orcid.org/0000-0002-7182-0386, Satbaev University, Almaty, the Republic of Kazakhstan, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
A.Sadkowski, orcid.org/0000-0002-1041-4309, Silesian University of Technology, Katowice, the Republic of Poland, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
S.Podbolotov, orcid.org/0000-0002-7870-7183, Nosov Magnitogorsk State Technical University, Magnitogorsk, Russian Federation, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
A.Kolga, orcid.org/0000-0002-3194-2274, Ural State Agrarian University, Yekaterinburg, Russian Federation, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
I.Stolpovskikh, orcid.org/0000-0003-2893-5070, Satbaev University, Almaty, the Republic of Kazakhstan, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2021, (6): 077 - 084
https://doi.org/10.33271/nvngu/2021-6/077
Abstract:
Purpose. To study hydraulic losses in pumping units during pumping and transportation of liquids, to develop the design and technology solutions to improve the energy efficiency of centrifugal pumps in the mining and oil-producing industries.
Methodology. In the theoretical and experimental analysis of hydraulic losses during the transportation of liquids, the hydraulics and experimental analysis methods were used.
Findings. As a result of the research carried out, a new design scheme of a multistage centrifugal pump has been developed, providing a coaxial arrangement of impellers, which allows reducing hydraulic losses in pump elements and increasing the energy efficiency of pumping units.
Originality. Based on the analysis of existing designs of multistage blowers of axial and centrifugal types, the distribution of hydraulic losses in the elements of a centrifugal blower with coaxial impellers is considered. Experimental dependences on the establishment of pressure flow and power characteristics are presented. Based on the accounting of hydraulic losses, the energy efficiency of the design of the pumping unit with the coaxial arrangement of the impellers was assessed.
Practical value. The new design of a centrifugal pump with coaxial impellers reduces hydraulic losses by more than 23% compared to traditional designs of centrifugal pumps. The results of the work can be used by design, research, and industrial organizations engaged in the design and operation of pumping equipment.
Keywords: hydraulic transport systems, centrifugal pump, hydraulic losses, coaxial arrangement of impellers
References.
1. Grigoriev, S.V., Savin, L.A., & Shakhbanov, R.M. (2015). Substantiation of the possibilities of increasing the energy characteristics of centrifugal pumps. Bulletin of TulSU, (7, part 2), 122-127.
2. Commission Regulation (EC) No. 641/2009 of 22 July 2009. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009R0641.
3. Taran, I.A., & Klimenko, I.Yu. (2014). Transfer ratio of double-split transmissions in case of planetary gear input. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 60-66.
4. Samorodov, V., Bondarenko, A., Taran, I., & Klymenko, I. (2020). Power flows in a hydrostatic-mechanical transmission of a mining locomotive during the braking process. Transport Problems, 15(3), 17-28. https://doi.org/10.21307/tp-2020-030.
5. Kandi, A., Moghimi, M., Tahani, M., & Houreh, S.D. (2020). Optimization of pump selection for running as turbine and performance analysis within the regulation schemes. Energy, 217, 119402. https://doi.org/10.1016/j.energy.2020.119402.
6. Urmila, B. (2011). Optimum space vector pwm algorithm for three-level inverter. ARPN Journal of Engineering and Applied Sciences, 6(9), 24-36.
7. Xiao-Qi Jia, Bao-Ling Cui, Zu-Chao Zhu, & Yu-Liang Zhang (2019). Experimental investigation of pressure fluctuations on inner wall of a centrifugal pump. International Journal of Turbo & Jet-Engines, 36(4), 401-410. https://doi.org/10.1515/tjj-2016-0078.
8. Yang, S.-S., Kong, F.-Y., Jiang, W.-M., & Qu, X.-Y. (2012). Effects of impeller trimming influencing pump as turbine. Computers & Fluids, 67, 72-78. https://doi.org/10.1016/j.compfluid.2012.07.009.
9. Ukhin, B.V. (2007). Effect of variation in the diameter of a centrifugal dredge impeller on its characteristics. Power Technology and Engineering, 41(1), 8-13.
10. Zhao, X., Luo, Y., Wang, Z., Xiao, Y., & Avellan, F. (2019). Unsteady flow numerical simulations on internal energy dissipation for a low-head centrifugal pump at part-load operating conditions. Energies, 12(10), 1-20. https://doi.org/10.3390/en12102013.
11. Zhao, X., Wang, Z., Xiao, Y., & Luo, Y. (2019). Thermodynamic analysis of energy dissipation and unsteady flow characteristic in a centrifugal dredge pump under over-load conditions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(13), 095440621882435, 4742-4753. https://doi.org/10.1177/0954406218824350.
12. Forero, J.D., Taborda, L.L., & Silvera, A.B. (2019). Characterization of the performance of centrifugal pumps powered by a diesel engine in dredging applications. International Review of Mechanical Engineering, 13(1), 11-20.
13. Peng, G., Wang, Z., & Fu, S. (2015). Wear characteristics of flow parts of centrifugal dredge pump. Journal of Drainage and Irrigation Machinery Engineering, 33(12), 1013-1018. https://doi.org/10.3969/j.issn.1674-8530.15.0161.
14. Peng, G.J., Luo, Y.Y., & Wang, Z.W. (2015). Research on wear properties of centrifugal dredge pump based on liquid-solid two-phase fluid simulations. IOP Conference Series Materials Science and Engineering, 72(4), 042048, 1-6. https://doi.org/10.1088/1757-899X/72/4/042048.
15. Bugdayci, H.H., Munts, E., & Grinwis, H. (2013). Latest developments in dredge pump technology: how recent pump designs can improve the productivity of a dredge. Proceedings WODCON XX Congress and Exhibition: The Art of Dredging. Retrieved from https://www.cedaconferences.org/documents/dredgingconference/html_page/16/wodcon_xx_low_res.pdf.
16. Xu, Z., Jin, Z., Liu, B., & Bengt, S. (2019). Experimental investigation on solid suspension performance of coaxial mixer in viscous and high solid loading systems. Chemical Engineering Science, 208, 115144. https://doi.org/10.1016/j.ces.2019.08.002.
17. Holmberg, H., Acuna, J., Naess, E., & Sonju, O.K. (2016). Thermal evaluation ofcoaxial deep borehole heat exchangers. Journal Renewable Energy, 97, 65-76. https://doi.org/10.1016/j.renene.2016.05.048.
18. Dijkshoorn, L., Speer, S., & Pechnig, R. (2013). Measurements and design calculations for a deep coaxial borehole heat exchanger in Aachen, Germany. International Journal of Geophysics, 2013, 916541, 1-14. https://doi.org/10.1155/2013/916541.
19. Kong, Z., & Liu, P. (2020). Simulation analysis of mechanical performance of the broadband coaxial step attenuator. Journal of Physics: Conference Series. 3rd International Conference on Applied Mathematics, Modeling and Simulation, 1670, 012003, 1-7. https://doi.org/10.1088/1742-6596/1670/1/012003.
20. Zhai, L.M., Cao, L., Cao, J.W., Lei, H.M., Ahn, S.H., Chen,F.N., ..., & Wang, Z.W. (2021). Numerical analysis of rotor dynamics of dredge pump shafting. 2nd IAHR-Asia Symposium on Hydraulic Machinery and Systems, IAHR-Asia 2019, 627, 012015, 1-8.
21. Cardenas-Gutierrez, J.A., Valencia, G. Ochoa, & Duarte Forero,J. (2020). Parametric analysis CFD of the hydraulic performance of a centrifugal pump with applications to the dredging industry. Journal of Engineering Science and Technology Review, 13(3), 8-14. https://doi.org/10.25103/jestr.133.02.
22. Shuang, J., Fusheng, N., & Ting, L. (2019). Research on the multi-loop control system for swing process of cutter suction dredger. CACRE2019: Proceedings of the 2019 4th International Conference on Automation, Control and Robotics Engineering, 43, 1-6. https://doi.org/10.1145/3351917.3351968.
23. Working principle of multistage centrifugal pump (2019). Retrieved from https://c-triada.ru/masteru/printsip-raboty-mnogostupenchatogo-tsentrobezhnogo-nasosa.html.
24. Pumps: history and principle of operation of different types of pumping units (2020). Retrieved from https://zen.yandex.ru/media/id/5ed4b30b234d116acb057a7c/nasosy-istoriia-i-princip-raboty-raznyh-tipov-nasosnyh-agregatov-5f4698f2ca90bb1dc75b45ad.
Newer news items:
- Regulatory content of the category “safety of mining works” - 29/12/2021 01:25
- Assessment of heavy metal pollution of sedimentation in the Sitnica river based on pollution indicators - 29/12/2021 01:25
- Protection of public relations in the field of amber mining in Ukraine: legal aspect - 29/12/2021 01:25
- Optimization of the management system for mitigating the consequences of water area pollution during the crisis - 29/12/2021 01:25
- Problems of criminal liability for illegal amber mining in Ukraine - 29/12/2021 01:25
- Improvement of modeling techniques of transients in transformers based on magnetoelectric equivalent schemes - 29/12/2021 01:25
- Analyzing and identifying the limits of 660V grid parameters to ensure electrical safety in underground coal mines - 29/12/2021 01:25
- High-frequency periodic processes in two-winding power transformers - 29/12/2021 01:25
- New approach to injection of pressurizing gas into fuel tanks of power units - 29/12/2021 01:25
- Variation coefficient of torsional vibrations of the connection nodes of vibrating machines - 29/12/2021 01:25
Older news items:
- Improving the capacity of mine degassing pipelines - 29/12/2021 01:25
- Sand-sodium-silicate mixtures structured in steam-microwave environment effective values of thermo-physical properties - 29/12/2021 01:25
- Co-firing of gas coal dust fine particles and synthetic peat gas. Part 1. Simulation of processes of steam-air gasification of peat in a fixed bed and combustion of dust and gas mix in a stream - 29/12/2021 01:25
- Formation of converging cylindrical detonation front - 29/12/2021 01:25
- Assessing the quality of drilling-and-blasting operations at the open pit limiting contour - 29/12/2021 01:25
- Simulation of amber extraction processes from sandy and clay rocks with stope filling - 29/12/2021 01:25
- Numerical simulation of the open pit stability based on probabilistic approach - 29/12/2021 01:25
- Improvement of oil field development using enhanced oil recovery methods - 29/12/2021 01:25
- Effect of geological and technological parameters on the convergence in a stope - 29/12/2021 01:25
- Petrographical and microfacies study of Sinjar formation in Bazyan anticline, Sulaimaniyah region (Northern Iraq) - 29/12/2021 01:25