Data flow management in information systems using blockchain technology
- Details
- Category: Content №3 2024
- Last Updated on 28 June 2024
- Published on 30 November -0001
- Hits: 2431
Authors:
R.Sytnyk, orcid.org/0000-0001-7820-9128, Ukrainian State University of Science and Technologies, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Vik.Hnatushenko*, orcid.org/0000-0001-5304-4144, Ukrainian State University of Science and Technologies, Dnipro, Ukraine; Dnipro University of Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
* Corresponding author e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2024, (3): 142 - 148
https://doi.org/10.33271/nvngu/2024-3/142
Abstract:
Purpose. Improving the process of information transfer for critical infrastructure sectors and enterprises through new approaches to real-time tracking of goods, services, and equipment, ensuring secure and transparent data integration and auditing of data flows in information systems using blockchain technologies.
Methodology. This research moves away from traditional centralized data management systems based on SQL and no-SQL databases by implementing a decentralized, immutable system built on blockchain technology. This uses the principles of the Merle tree in a digital ledger within blockchain technology to verify data integrity and smart contracts to automate key data flow processes. By tracking goods and equipment through supply chains on the blockchain, this approach ensures product authenticity, provenance, and transparency in real time. In addition, it creates a secure and transparent audit trail for all data in the system compared to conventional centralized data management systems based on SQL and no-SQL databases.
Findings. The developed blockchain-based approach improves data security, transparency, automation, and trust in managing data flows. Compared to traditional systems, it offers unique advantages such as immutability, decentralized management, and improved traceability. But while offering numerous advantages, blockchain also faces some limitations in terms of scalability and system complexity.
Originality. Digital ledger and blockchain methods have been further developed in the context of designing information systems and data flow management systems based on blockchain algorithms in the context of Industry 4.0. This allows increasing data security, transparency, automation, and trust in data flow management.
Practical value. The proposed approach is used to design information and data flow management systems based on blockchain algorithms. This improves the quality of data flow management in industrial enterprises and critical infrastructure, as well as supply chains.
Keywords: Data flow, information systems, blockchain, industry 4.0, supply chains, critical infrastructure
References.
1. Ghobakhlo, M. (2020). Industry 4.0, digitization, and opportunities for sustainability. Journal of cleaner production, 252, 119869. https://doi.org/10.1016/j.jclepro.2019.119869.
2. Okeagu, Ch. N. (2021). Principles of supply chain management in the time of crisis. Best Practice & Research Clinical Anaesthesiology, 35(3), 369-376. https://doi.org/10.1016/j.bpa.2020.11.007.
3. Győrödi, C., Győrödi, R., Pecherle, G., & Olah, A. (2015). A comparative study: MongoDB vs. MySQL. In 2015 13th International Conference on Engineering of Modern Electric Systems (EMES) (pp. 1-6). IEEE. https://doi.org/10.1109/EMES.2015.7158433.
4. Dutta, P. (2020). Blockchain technology in supply chain operations: Applications, challenges and research opportunities. Transportation research part e: Logistics and transportation review, 142, 102067. https://doi.org/10.1016/j.tre.2020.102067.
5. Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & information systems engineering, 6, 239-242. https://doi.org/10.1007/s12599-014-0334-4.
6. Nakamoto, S. (n.d.). Bitcoin: A Peer-to-Peer Electronic Cash System. Retrieved from https://bitcoin.org/bitcoin.pdf.
7. Mathisen, M. (2018). The Application of Blockchain Technology in Norwegian Fish Supply Chains. A Case Study. Norwegian University of Science and Technology. Retrieved from https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2561323.
8. Sytnyk, R., Hnatushenko, Vik., & Hnatushenko, V. (2022). Decentralized Information System for Supply Chain Management Using Blockchain. IntelITSIS 2022: Proc. of the 3rd Intern. Workshop on Intelligent Information Technologies & Systems of Information Security, March 23–25, 2022. Khmelnytskyi, Ukraine, 3156, 587-598. Retrieved from https://ceur-ws.org/Vol-3156/paper45.pdf.
9. Tian, F. (2016). An agri-food supply chain traceability system for China based on RFID & blockchain technology. WU Vienna University of Economics and Business. https://doi.org/10.1109/ICSSSM.2016.7538424.
10. Yaga, D. (2019). Blockchain technology overview. arXiv preprint arXiv:1906.11078. https://doi.org/10.48550/arXiv.1906.11078.
11. El Ioini, N., & Pahl, C. (2018). A review of distributed ledger technologies. On the Move to Meaningful Internet Systems. OTM 2018 Conferences. https://doi.org/10.1007/978-3-030-02671-4_16.
12. Kapengut, E., & Mizrach, B. (2023). An event study of the ethereum transition to proof-of-stake. Commodities, 2(2), 96-110. https://doi.org/10.3390/commodities2020006.
13. Dhumwad, S., Sukhadeve, M., Naik, C., Manjunath, K. N., & Prabhu, S. (2017). A peer to peer money transfer using SHA256 and Merkle tree. 23 Annual International Conference in Advanced Computing and Communications (ADCOM). IEEE, 2017. https://doi.org/10.1109/ADCOM.2017.00013.
14. Fang, W. (2020). Digital signature scheme for information non-repudiation in blockchain: a state of the art review. Journal on Wireless Communications and Networking, 56(2020). https://doi.org/10.1186/s13638-020-01665-w.
15. Dannen (2017). Introducing Ethereum and solidity, (1). Berkeley: Apress. https://doi.org/10.1007/978-1-4842-2535-6.
Newer news items:
- Methodological approaches to enterprise security management: traditional and transformed to the conditions of functioning - 28/06/2024 21:21
- Criminal liability for illegal acts with amber: law-making and law-enforcement issues - 28/06/2024 21:21
- Automation of building an individual educational trajectory for a higher education student - 28/06/2024 21:21
- Financial determinants of the post-war reconstruction of the national economy on the principles of the European Green Deal - 28/06/2024 21:21
- Evaluation of the institutional development of innovative activities to ensure the economy of the state - 28/06/2024 21:21
- Personnel potential of industrial enterprises: formation and management - 28/06/2024 21:21
- Identification and suppression of signals of the rear lobe of the radiation pattern of the radar antenna - 28/06/2024 21:21
- Integration of the educational process in higher education with digital technologies - 28/06/2024 21:21
Older news items:
- Improvement of the method for optimization of predicting the efficiency of a robotic platform - 28/06/2024 21:20
- The environmental effectiveness of humate reagent in internal and external hydro-filling of quarries - 28/06/2024 21:20
- Integrated water resources monitoring system within the structure of environmental safety in southern Ukraine - 28/06/2024 21:20
- Antioxidant properties of brown coal humic substances - 28/06/2024 21:20
- Current tools to control decarbonization in Ukraine both governmentally and locally - 28/06/2024 21:20
- Ecological and geochemical aspects of thermal effects on argillites of the Lviv-Volyn coal basin spoil tips - 28/06/2024 21:20
- Effect of hardened cement waste and fresh cement in the treatment of expansive soil - 28/06/2024 21:20
- Development of the concept for improving the management system of employee safety and health in Ukraine - 28/06/2024 21:20
- Rotor configuration for improved working characteristics of LSPMSM in mining applications - 28/06/2024 21:20
- Designing the functional surfaces of camshaft cams of internal combustion engines - 28/06/2024 21:20