Assessment of the oil and gas potential of the eastern edge of the Northern Ustyurt using new geophysical data
- Details
- Category: Content №5 2024
- Last Updated on 29 October 2024
- Published on 30 November -0001
- Hits: 707
Authors:
Z.B.Bekeshova, orcid.org/0009-0006-1867-0979, Yessenov University, Aqtau, the Republic of Kazakhstan, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
B.T.Ratov*, orcid.org/0000-0003-4707-3322, Satbayev University, Almaty, the Republic of Kazakhstan, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
A.K.Sudakov, orcid.org/0000-0003-2881-2855, Dnipro University of Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
K A.Kozhakhmet, orcid.org/0000-0003-1339-7193, Yessenov University, Aqtau, the Republic of Kazakhstan, e-mail:This email address is being protected from spambots. You need JavaScript enabled to view it.
D.A.Sudakova, orcid.org/0000-0002-8676-4006, Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine
* Corresponding author e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2024, (5): 005 - 011
https://doi.org/10.33271/nvngu/2024-5/005
Abstract:
Purpose. Detailed substantiation of the geological structure of the eastern edge of the Northern Ustyurt, clarification of modern geological and geophysical data, as well as highlighting the mainstages of evaluating the results of exploration work to confirm the oil and gas potential and subsequent exploitation of the fields.
Methodology. The authors used the following scientific methods: generalization – to systematize scientific provisions; analogy and comparison – to characterize deflection in different periods; analysis and synthesis – to substantiate geological and geophysical data; algorithmmization – to determine conceptual provisions regarding the assessment of the oil and gas bearing capacity of the trough.
Findings. In order to achieve the goals, the indicators of oil and gas capacity in the areas of the eastern side of the Northern Ustyurt of different geological ages were substantiated. The geological and geophysical features of the basin dating back to 2010 compared to modern refinement of geological data were characterized. The productive and unproductive structures of the eastern side of the Northern Ustyurt are characterized, taking into account the showing of oil and gas based on deposits of different geological ages. The importance of conducting geological exploration and creating corresponding cartographic materials is justified, followed by the design of predictive graphical models, geological sections, and a detailed plan of the territory.
Originality. The influence of high hydro carbon generation rates on the further identification of “oil windows” has been substantiated for the first time. The hierarchical levels of predicting the oil and gas content of the trough are identified. The necessity of improving the mechanisms for assessing oil and gas content is substantiated.
Practical value. The substantiation of the features of the assessment of the oil and gas content of the of the eastern edge of the Northern Ustyurt, which should be based on forecasting promising areas of prospecting, is the key to distinguishing between productive and unproductive objects, determining their real scale and directing investment flow precisely to promising areas with minimal environmental and economic losses.
Keywords: Northern Ustyurt, field, oil, gas, tectonics, section, geology, forecast
References.
1. Kazakhstan resumes active search for new mineral deposits (2022). Retrieved from https://nangs.org/news/upstream/kazakhstan-vozobnovlyaet-aktivnyj-poisk-novykh-mestorozhdenij-poleznykh-iskopaemykh.
2. Sadovenko, I., Zagrytsenko, A., Podvigina, O., & Dereviagina, N. (2016). Assessment of environmental and technical risks in the process of mining based on numerical simulation of geofiltration. Mining of Mineral Deposits, 10(1), 37-43. https://doi.org/10.15407/mining10.01.037.
3. Abilkhasimov, H. (2019). On new prospects for the oil and gas potential of Northern Ustyurt based on the results of basin modeling. Neft i Gaz, 1(109), 37-57.
4. Sudakov, A., Dreus, A., Ratov, B., Sudakova, O., Khomenko, O., Dziuba, S., Sudakova, D., Muratova, S., & Ayazbay, M. (2020). Substantiation of thermomechanical technology parameters for isolating absorbing levels of the boreholes. News of the National Academy of Sciences of the Republic of Kazakhstan, 2(440), 63-71. https://doi.org/10.32014/2020.2518–170X.32.
5. Jurayev, T., Khudayarov, B., Yusupbekov, N., Adilov, F., & Ivanyan, A. (2016). Experience of development and implementation of an integrated intelligent control system for the Ustyurt gas-chemical complex. Procedia Computer Science, 2016, 485-489. https://doi.org/10.1016/j.procs.2016.09.431.
6. Clancy, S., Worrall, F., Davies, J., & Gluyas, J. (2018). An assessment of the footprint and carrying capacity of oil and gas well sites: The implications for limiting hydrocarbon reserves. Science of the Total Environment, 618, 586-594. https://doi.org/10.1016/j.scitotenv.2017.02.160.
7. Zhang, G., Yang, S., Mo, C., & Zhang, Z. (2022). Experimental research on capacity expansion simulation of multi-cycle injection-production in the reconstruction of oil reservoirs to underground gas storage. Journal of Energy Storage, 54. https://doi.org/10.1016/j.est.2022.105222.
8. Ratov, B. T., Chudyk, I. I., Fedorov, B. V., Sudakov, A. K., & Borash, B. R. (2023). Results of production tests of an experimental diamond crown during exploratory drilling in Kazakhstan. SOCAR Proceedings, (2), 023-029. https://doi.org/10.5510/OGP20230200842.
9. Goudarzi, A., Meckel, T., Seyyed, H., & Treviño, R. (2019). Statistical analysis of historic hydrocarbon production data from Gulf of Mexico oil and gas fields and application to dynamic capacity assessment in CO2 storage. International Journal of Greenhouse Gas Control, 80, 96-102. https://doi.org/10.1016/j.ijggc.2018.11.014.
10. Ebuka, N., & Iyeke, S. (2022). Analyzing the impact of oil and gas local content laws on engineering development and the GDP of Nigeria. Energy Policy, 163, 112836. https://doi.org/10.1016/j.enpol.2022.112836.
11. Wang, W., Pang, X., Chen, Z., Chen, D., Zheng, T., Luo, B., Li, J., & Yu, R. (2019). Quantitative prediction of oil and gas prospects of the Sinian-Lower Paleozoic in the Sichuan Basin in central China. Energy, 174, 861-872. https://doi.org/10.1016/j.energy.2019.03.018.
12. Lee, W., Abuov, Y., & Seisenbayev, N. (2020). CO2 storage potential in sedimentary basins of Kazakhstan. International Journal of Greenhouse Gas Control, 103, 103186. https://doi.org/10.1016/j.ijggc.2020.103186.
13. Wang, Z., Fan, Z., Zhang, X., & Liubxichen, B. (2022). Status, trends and enlightenment of global oil and gas development in 2021. Petroleum Exploration and Development, 49(5), 1210-1228. https://doi.org/10.1016/S1876-3804(22)60344-6.
14. Wang, Z., Shi, Y., Wen, L., Jiang, H., Jiang, Q., Huang, S., Xie, W., …, & Yan, Z. (2022). Exploring the potential of oil and gas resources in the Sichuan Basin with Super Basin Thinking. Petroleum Exploration and Development, 103, 977-990. https://doi.org/10.1016/S1876-3804(22)60326-4.
15. Ratov, B. T., Fedorov, B. V., Sudakov, A. K., Taibergenova, I., & Kozbakarova, S. M. (2021). Specific features of drilling mode with extendable working elements. E3S Web of Conferences, 230, 01013. https://doi.org/10.1051/e3sconf/202123001013.
16. Kimiagari, S., Mahbobi, M., & Toolsee, T. (2023). Attracting and retaining FDI: Africa gas and oil sector. Resources Policy, 80. https://doi.org/10.1016/j.resourpol.2022.103219.
17. Ding, M., Li, Q., Yuan, Y., Wang, Y., Zhao, N., & Han, Y. (2022). Permeability and heterogeneity adaptability of surfactant-alternating-gas foam for recovering oil from low-permeability reservoirs. Petroleum Science, 19(3), 1185-1197. https://doi.org/10.1016/j.petsci.2021.12.018.
18. Chudyk, I., Biletskiy, M., Ratov, B., Sudakov, A., & Borash, A. (2024). A new method of well completion employing the implosion effect. V International Conference “Essays of Mining Science and Practice” IOP Conference Series: Earth and Environmental Science, 1348(2024), 012056. IOP Publishing. https://doi.org/10.1088/1755-1315/1348/1/012056.
19. Xu, X., Huang, H., Zhang, S., & Hu, S. (2019). Gas generation potential and processes of Athabasca oil sand bitumen from gold tube pyrolysis experiments. Fuel, 239, 804-813. https://doi.org/10.1016/j.fuel.2018.11.077.
20. Liu, G., Hu, W., Li, X., & Zhang, B. (2022). The division of oil and gas accumulation assemblage in the Sichuan Basin and the construction of a favorable accumulation assemblage prediction model. Energy Reports, 8, 14716-14725. https://doi.org/10.1016/j.egyr.2022.10.373.
21. Fu, G., Liang, M., Guo, H., Xu, H., & Li, Q. (2021). Prediction method of favorable positions of transporting oil and gas capacity configuration in different periods of faults. Journal of Natural Gas Geoscience, 6(2), 101-109. https://doi.org/10.1016/j.jnggs.2021.05.002.
22. Sheng, J., Voldsund, M., & Ertesvåg, I. (2023). Advanced exergy analysis of the oil and gas processing plant on an offshore platform: A thermodynamic cycle approach. Energy Reports, 9, 820-832. https://doi.org/10.1016/j.egyr.2022.12.021.
Newer news items:
- Aspects of Developing an Innovative, Energy-Efficient, LowEmission Co-Generator - 29/10/2024 18:14
- Saving energy resources during operation of rolling stock of underground electrified transport - 29/10/2024 18:14
- Methodology for determining the heat distribution in disc brakes of mine hoisting machines - 29/10/2024 18:14
- Analysis of the third class mechanism using the modeling method in the Mathcad software environment - 29/10/2024 18:14
- Substantiation of rational design parameters of a crusher with two movable jaws - 29/10/2024 18:14
- The concept of creating a maneuverable power plant based on a small modular reactor - 29/10/2024 18:14
- Analytical justification of the thermochemical interaction between blast reagents and carbon-containing products under the influence of magnetic fields - 29/10/2024 18:14
- Prediction of rock fragmentation in the Boukhadra’s mine conditions - 29/10/2024 18:14
- Mathematical model for heat transfer during underground coal gasification process - 29/10/2024 18:14
- Modeling of drilling tool vibration in the process of drilling blast wells - 29/10/2024 18:14