Assessment of PVT-technology efficiency in combined solar power plants
- Details
- Category: Electrical complexes and systems
- Last Updated on 09 May 2014
- Published on 16 April 2013
- Hits: 4885
Authors:
L.I. Knysh, Cand. Sci. (Tech.), Associate Professor, Oles Gonchar Dnepropetrovsk National University Senior Lecturer of the Department of Aerohydrodynamic and Energy Mass Transfer of the Mechanics and Mathematics Faculty, Dnepropetrovsk, Ukraine
V.A. Gabrinets, Dr. Sci. (Tech.), Professor, Oles Gonchar Dnepropetrovsk National University, Professor of the Department of Engine Design of the Physical-Technical Faculty, Dnepropetrovsk, Ukraine
Abstract:
Combined PVT-cycle with gallium-arsenide high-temperature solar cells and solar radiation concentrator is proposed to increase the energy performance of solar power plants. Cooling of the solar cells is carried out by means of the coolant which is the cycle fluid of the steam turbine cycle.
Purpose. To determine the quantitative indicators ofcombined PVT-cycle. Temperatures providing high efficiency must be found.
Methodology. The research was conductedbased on analysis of the functionof theoverall efficiency of the combined cycle and analysis of its first and second derivatives. The functionof theoverall efficiency was constructed using the approximation of experimental research for gallium-arsenide solar cells and analytical relationships for the thermodynamic Rankine cycle.
Findings. The values of efficiency of combined PVT-power plants with unijunction and heterostructure solar cells were received. The waste heat was used in classic steam turbine cycle.
Originality. The methodology allowsus to determine, for the first time, the temperature of the solar radiation receiving system, which provides optimal combined conversion performance indicators. The quantitative values of efficiency of combined PVT-cycles were found.
Practicalvalue. The method determining the optimal efficiency indicators can be applied when designing the reception systems of prospective PVT-power plants and other systems with similar thermal conversion cycle.
References:
1. В Крыму построена самая мощная солнечная электростанция в мире [Електронний ресурс] // Центр журналистских расследований. – Режим доступу до ресурсу: http://investigator.org.ua/news/28638
Center for Investigative Journalism, (2011), “The most powerful solar power plant in the world was built in Crimea”, available at: http://investigator.org.ua /news/28638 (accessed December 4, 2012).
2. Безручко К.В. Автономные наземные энергетические установки на возобновляемых источниках энергии / К.В. Безручко, С.В. Губин.– Харьков: ИЦ ХАИ, 2007.– 310 с.
Bezruchko, K.V. and Gubin, S.V. (2007), Avtonomnye nazemnye energeticheskie ustanovki na vozobnovlyaemykh istochnikakh energii [Autonomous Ground Power Systems for Renewable Energy], ITSKHAI, Kharkov, Ukraine.
3. Алфёров Ж.И. Тенденции и перспективы развития солнечной фотоэнергетики / Ж.И. Алферов, В.М. Андреев, В.Д. Румянцев // Физика и техника полупроводников. – 2004. – T.38. – №8. – С. 937–948.
Alferov, Zh.I., Andreev, V.M. and Rumyantsev, V.D. (2004), “Trends and prospects of solar photovoltaic’s”, Fizika i tekhnika poluprovodnikov, Vol.38, no.8, pp. 937–948.
4. Васильев В.А. Расчётные технико-экономические характеристики солнечных комбинированных фототермодинамических энергоустановок / В.А. Васильев, Б.В. Тарнижевский // Известия РАН. Энергетика. – 2005. – №3. – С. 148–156.
Vasilyev, V.A., Tarnizhevskiy, B.V. (2005), “Design technical and economic characteristics of combined photothermaldynamic solar power plants”, Izvestiya RAN. Energetika, no.3, pp. 148–156.
5. Андреев В.М. Многослойные AlGaAs/GaAs гетероструктуры солнечных элементов для концентрирующих модулей / В.М. Андреев, В.П. Хвостиков, В.Р. Ларионов // Труды 12–й Европейской фотовольтаической солнечно–энергетической конференции. Амстердам, 11–12 апреля. – Амстердам, 1994. – С. 1401–1404.
Andreev, V.M., Khvostikov, V.P. and Larionov, V.R. (1994), “Multilayer AlGaAs/GaAs heterostructure solar cells for concentrator dules”, Proceedings of the 12th European PhotovoltaicSolar Energy Conference, Amsterdam, April 11–12, 1994, Amsterdam, James and James Science Publishers, pp. 1401–1404.
6. Карташов Э.М. Техническая термодинамика / Э.М. Карташов, В.А. Кудинов. – М.: Высшая школа, 2000. – 261 с.
Kartashov, E.M. and Kudinov, V.A. (2000), Tekhnicheskaya termodinamika, [Engineering Thermodynamics], Vysshaya shkola, Moscow, Russia.
2013_2_knysh | |
2014-05-06 338.43 KB 1145 |