Features of mine geotechnical and electromechanical systems reliability evaluation based on mathematical and computer modeling of dynamic processes

User Rating:  / 1
PoorBest 

 Authors:

N.A. Ikonnikovа, State Higher Educational Institution “National Mining University”, Assistant Lecturer of the Department of Metrology and Information and Measurement Technologies, Dnipropetrovsk, Ukraine

Abstract:

Purpose. To carry out the mathematical modeling of dynamic processes to solve the problems of geotechnical systems state assessment.

Methodology. Studies were carried out through an integrated approach to the assessment of the static and dynamic state of mining technical systems by improving the methods of mathematical and computer modeling of dynamic processes, numerical spectral analysis of the results of the field measurements received by means of new and standard methods, and subsequent statistical treatment of the results.

Findings. The features of mathematical modeling in deterministic-chaotic systems have been determined including options, criteria and allowable errors of iterations. From the practical point of view the simulation allows us to take into account the number of elements in the system, specific masses and spring linkage between the elements, the variety of these links, to set virtually anystimulating influences, and to evaluate the response to these effects by models of the dynamic processes in geo-technical and geo-mechanical systems. We have substantiated the parameters of the chaos generator for full-scale modeling of random effects. We have developed and tested the original program of Lorentz oscillator with parametric coefficients of a series of numbers 2±k for the microcontroller. Its distinctive feature consists in the scaling operation which uses transfer byte operands. This reduced the time spent calculations and allowed the modeling of effects of deterministic chaos in real time.

Originality. The mathematical models of dynamic processes in the form of simple, fully-connected, with predetermined nonlinearities of k-mass systems of the pendulum have been developed. We have obtained mathematical expressions for determination of the system elements trajectories to predict the dynamic state of the system ‘mining technical object – rock massif’.

Practical value. Mathematical models developed by the author allowed us to carry out modeling of dynamic processes to determine the parameters of the blast hole walls cutting in order to increase the load-bearing capacity of frame and anchor bolting in development workings conducted in unstable rocks in deep mines. Based on this, we have developed and introduced the patented method of fastening of anchors in the rock of mine tunnel. “Guidelines for rapid determination of the elastic and strength properties of untreated samples of rock and structural elements geo-composite structures by nondestructive method of testing” have been created.

 

References: 
 
1. Надежность технических систем: Справочник / [Ю.К. Беляев, В.А. Богатырев, В.В. Болотин и др.] – Под ред. И.А. Ушакова. – М.: Радио и связь, 1985 – 608 с.
Belyayev, Yu.K., Bogatyrev, V.A., Bolotin, V.V. and Ushakov, I.A. (1985), Nadezhnost tekhnicheskikh system [Technical System Reliability], Radio i svyaz, Moscow, Russia.
 
2. Математическое моделирование динамики хаотических процессов в инженерно-экологических системах / В.И. Корсун, А.А. Яланский, Н.А. Иконникова, Т.А. Яровая // Математические методы в технике и технологиях. Международная научная конференция ММТТ – 23. – Саратов: Саратовский государственный технический университет, 2010. – Т.5. – С. 51–54.
Korsun, V.I., Yalanskiy, A.A., Ikonnikova, N.A. and Yarovaya, T.A. (2010), “Mathematical modeling of chaotic process dynamics in engineering-ecological systems”, Proc. of the International Conf. “Mathematical methods in technics and technology – 23”, Saratov Technical University, Saratov, Russia, Vol.5, pp. 51–54.
 
3. Яланский А.А. (ст.) Особенности и диагностика процессов самоорганизации породного массива в окресности горных выработок / Яланский А.А. (ст.), Паламарчук Т.А., Розумный С.Н. // Горный информационно-аналитический бюллетень. – М.: МГГУ, 2003. – №3. – С. 151–154.
Yalanskiy, A.A. (sen.), Palamarchuk, T.A. and Rozumnyy, S.N. (2003), “Features and diagnostics of self-organization processes in rock massif around mine workings”, Gornyy informatsyonno-analiticheskiy bulleten, MGGU, no.3, pp. 151–154.
 
4. Глушко В.Т. Геофизический контроль в шахтах и тоннелях / В.Т. Глушко, В.С. Ямщиков, А.А. Яланский (ст.). – М.: Недра, 1987. – 278 с.
Glushko, V.T., Yamshchikov, V.S. and Yalanskiy, A.A. (sen.) (1987), Geofizicheskiy control v shakhtakh i tonnelyakh [Geophysical Control in Mine Tunnels], Nedra, Moscow, Russia. 
 
5. Федер Е. Фракталы / Федер Е.; пер. с англ. – М.: Мир, 1991. – 254 с.
Feder, Jens (1989), Fractals, Plenum Press.
 
6. Арнольд В.И. Теория катастроф. – Изд. 3-е, дополненное / В.И. Арнольд. – М.: Наука, 1990. – 128 с.
Arnold, V.I. (1990), Teoriya katastrof [Catastrophe Theory], Nauka, Moscow, Russia.
 
7. Иконникова Н.А. Особенности моделирования динамики хаотических процессов в детерминированных системах методами аналитической механики / Н.А. Иконникова // Геотехническая механика. – Днепропетровск: ИГТМ, 2007. – № 73. – С. 263–280.
Ikonnikova, N.A. (2007), “Peculiarities of modeling of chaotic process dynamics in determine systems by the methods of analytical mechanics”, Geotekhnicheskaya mekhanika, no.73, pp. 263–280.
 
8. Булат А.Ф. Фракталы в геомеханике / А.Ф. Булат, В.И. Дырда – К.: Наук. Думка, 2005. – 358 с.
Bulat, A.F. and Dyrda, V.I. (2005), Fractaly v geomekhanike [Fractals in Geomechanics], Naukova Dumka, Kiev, Ukraine.
 
9. Золотухин И.А. Анализ колебаний в многоконтурных электрических моделях теплогидравлических систем: автореф. дис. на соискание ученой степени канд. техн. наук: спец. 05.09.05 „Теоретическая электротехника“ / И.А. Золотухин. – М.: МЭИ, 2008. – 19 с.
Zolotukhin, I.A. (2008), “Analysis of vibration in multiloop electrical models of heat-hydraulic systems”, Abstract of Cand. Sci. (Tech.) dissertation, Theoretical electrotechnics, MEI, Moscow, Russia.
 
10. Корсун В.И. Обоснование параметров микропроцессорного генератора сигналов динамического хаоса / Корсун В.И., Иконникова Н.А., Яланский А.А. // Матеріали міжнародної конференції “Форум гірників – 2009”. – Дніпропетровськ: НГУ, 2009. – №4. – С. 263–271.
Korsun, V.I., Ikonnikova, N.A. and Yalanskiy, A.A. (2009), “Substantiation of microprocessor generator of dynamic chaos sygnals”, Proc. of the International Conf. “Forum of Mine Engineers – 2009”, no.4, pp. 263–271.
 
11. Яланский А.А. Особенности построения микропроцессорных систем автоматизированного технологического контроля надежности работы шахт и рудников / Яланский А.А., Иконникова Н.А., Арестов В.В. // Геотехническая механика. – Днепропетровск: ИГТМ НАНУ, 2006. – № 66. – С. 214–223.
Yalanskiy, A.A., Ikonnikova, N.A. and Arestov, V.V. (2006), “Design peculiarities of microprocessor systems of automatic technological control ofmine production stability”, Geotekhnicheskaya mekhanika, no.66, pp. 214–223.
 
12. Лоскутов А.Ю. Введение в синергетику / А.Ю. Лоскутов, А.С. Михайлов – М.: Наука, 1990. – 270 с.
Loskutov, A.Yu. and Mikhailov, A.S. (1990), Vvedeniye v sinergetiku [Introduction in Synergetics], Nauka, Moscow, Russia.
 
Files:
2012_6_ikonnikova
Date 2013-12-24 Filesize 426.21 KB Download 1247

Visitors

7575768
Today
This Month
All days
1995
98254
7575768

Guest Book

If you have questions, comments or suggestions, you can write them in our "Guest Book"

Registration data

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Journal was registered by Ministry of Justice of Ukraine.
Registration number КВ No.17742-6592PR dated April 27, 2011.

Contacts

D.Yavornytskyi ave.,19, pavilion 3, room 24-а, Dnipro, 49005
Tel.: +38 (056) 746 32 79.
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
You are here: Home Archive by issue 2012 Contents No.6 2012 Solid-state physics, mineral processing Features of mine geotechnical and electromechanical systems reliability evaluation based on mathematical and computer modeling of dynamic processes