Analysis of the third class mechanism using the modeling method in the Mathcad software environment
- Details
- Category: Content №5 2024
- Last Updated on 29 October 2024
- Published on 30 November -0001
- Hits: 2363
Authors:
S.Koshel, orcid.org/0000-0001-7481-0186, Kyiv National University of Technology and Design, Kyiv, Ukraine, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
V.Dvorzhak, orcid.org/0000-0002-1693-9106, Kyiv National University of Technology and Design, Kyiv, Ukraine, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
H.Koshel*, orcid.org/0000-0003-1862-1553, Open International University of Human Development “Ukraine”, Kyiv, Ukraine, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
M.Zalyubovskii, orcid.org/0000-0002-9183-2771, Open International University of Human Development “Ukraine”, Kyiv, Ukraine, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
I.Panasiuk, orcid.org/0000-0001-6671-4266, Kyiv National University of Technology and Design, Kyiv, Ukraine, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
* Corresponding author e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2024, (5): 051 - 058
https://doi.org/10.33271/nvngu/2024-5/051
Abstract:
Purpose. To carry out a kinematic analysis of a flat twelve-link hinged mechanism with three leading links, the basis of which is a structural group of links of the third class of the fourth order with rotational kinematic pairs, which is used in technological equipment.
Methodology. The kinematic study of a flat complex mechanism of the third class with three leading links was performed using the mathematical modeling method in the Mathcad software environment.
Findings. Using the method of mathematical modeling, the mechanism was presented in the form of free vectors built on its links, for which, taking into account the presence of three leading links, three vector contours were selected, which made it possible to draw up a system of vector equations of their closedness with further solving by a numerical method in the Mathcad software environment. The functions of the rotation angles of the mechanism links, their angular velocities and accelerations were obtained in analytical and graphical form depending on the rotation angle of the first driving crank of the mechanism, the calculation of the angular velocities and accelerations of all the driven links of the mechanism was performed.
Originality. A sequence was developed and a kinematic study of a complex planar mechanism of the third class with three leading links was done, the basis of which is a structural group of links of the third class of the fourth order. Schematic modeling of the mechanism with three leading links was performed, a visualization schedule of its kinematic scheme was built, and a valid version of its assembly was obtained from many possible ones, for which the values of kinematic parameters of all its links were determined.
Practical value. An analysis of the effect of the kinematic parameters of the three leading links of the third-class mechanism on the movement of the working body of the technological equipment was carried out. From the analysis of the obtained research results for the cycle of the mechanism the reason was found for the incomplete technological stoppage of the link, which should provide the working body of the machine for the required period of time. Recommendations of the elimination were made to identify the deficiency and proposals for the need to improve the drive of this equipment.
Keywords: mechanism of the third class, kinematic analysis of the mechanism, Mathсad computer modeling, kinematic study
References.
1. Morlin, F. V., Carboni, A. P., & Marti, D. (2023). Synthesis of Assur groups via group and matroid theory. Mechanism and Machine Theory, 184. https://doi.org/10.1016/j.mechmachtheory.2023.105279.
2. Diwan, N. (2020). Kinematic analysis of a new designed eight-link riveter mechanism. International Journal of Advanced Research in Engineering and Technolog, 11(9), 380-386. https://doi.org/10.34218/IJARET.11.9.2020.039.
3. Kemper, D., Fimbinger, E., Antretter, T., Egger, M., & Flachberger, H. (2023). The dynamics of an impact swing mechanism as an analytical mathematical model. Results in Engineering, 21, 101694. https://doi.org/10.1016/j.rineng.2023.101694.
4. Roussev, R., & Paleva-Kadiyska, B. (2015). Determination of the kinematic features of the feed dog of mechanisms for transportation of material of the sewing machines. Journal of Textiles and clothing, 3, 58-63.
5. Saxena, T., & Singh, V. P. (2017). Structural Analysis of Twelve Link Kinematic Chain using Graph Theory. International Journal for Scientific Research & Development, 5(10). ISSN (online): 2321-0613.
6. Jia, G., Li, B., Huang, H., & Zhang, D. (2020). Type synthesis of metamorphic mechanisms with scissor-like linkage based on different kinds of connecting pairs. Mechanism and Machine Theory, 151, 103848. https://doi.org/10.1016/j.mechmachtheory.2020.103848.
7. Duta, A., Popescu, I., Cretu, S.-M., Corzanu, A., Corzanu, V., & Popa, D.-L. (2022). The Manufacture of Curved Crease Surfaces Starting from Kinematic Analysis of Planar Mechanisms. Processes, 10, 2344. https://doi.org/10.3390/pr10112344.
8. Huang, P., Liu, T., Ding, H., & Zhao, Y. (2022). Computer-aided synthesis of planar mechanisms with one multiple-joint. Mechanism and Machine Theory, 177, 105044. https://doi.org/10.1016/j.mechmachtheory.2022.105044.
9. Ding, H., Huang, P., Yang, W., & Kecskeméthy, A. (2016). Automatic generation of the complete set of planar kinematic chains with up to six independent loops and up to 19 links. Mechanism and Machine Theory, 96(part 1), 75-93. https://doi.org/10.1016/j.mechmachtheory.2015.09.00.
10. Yanga, W., Dinga, H., & Kecskeméthy, A. (2022). Structural synthesis towards intelligent design of plane mechanisms: Current status and future research trend. Mechanism and Machine Theory, 171, 104715. https://doi.org/10.1016/j.mechmachtheory.2021.104715.
11. Han, J., & Shi, S. (2020). A novel methodology for determining the singularities of planar linkages based on Assur groups. Mechanism and Machine Theory, 147, 103751. https://doi.org/10.1016/j.mechmachtheory.2019.103751.
12. Petrescu, R. V. V., Aversa, R., Akash, B., Abu-Lebdeh, T., Apicella, A., Ion, F., & Petrescu, T. (2018). Some Aspects of the Structure of Planar Mechanisms. American Journal of Engineering and Applied Sciences, 11(1), 245.259. https://doi.org/10.3844/ajeassp.2018.245.259.
13. Zhauyt, A., Zhahanova, I., Smailova, G., Murzakhmetova, U., Kurmangalieva, L., & Kurenbay, A. (2017). The kinematic analysis of the third class mechanism. Vibroengineering Procedia, 12, 208-212. https://doi.org/10.21595/vp.2017.18678.
14. Aversa, R., Petrescu, R. V. V., Akash, B., Bucinell, R., Corchado, J., Chen, G., Li, S., …, & Petrescu, T. (2017). Kinematics and Forces to a New Model Forging Manipulator. American Journal of Applied Sciences, 14(1), 60-80. https://doi.org/10.3844/ajassp.2017.60.80.
15. Zalyubovs’kyi, M. G., Panasyuk, I. V., Koshel’, S. O., & Koshel’, G. V. (2021). Synthesis and analysis of redundant-free seven-link spatial mechanisms of part processing machine. International Applied Mechanics, 57(4), 466-476. https://doi.org/10.1007/s10778-021-01098-y.
16. Zalyubovsky, M. G., Panasyuk, I. V., Koshel’, S. O., & Lychov, D. O. (2022). Design Parameters of the Four-Link Hinged Mechanism of Barreling Machine Drive. International Applied Mechanics, 58(6), 725-731. https://doi.org/10.1007/s10778-023-01196-z.
17. Pramanika, S., & Thipsec, S. S. (2020). Kinematic synthesis of central-lever steering mechanism for four wheel vehicles. Acta Polytechnica, 60(3), 252-258. https://doi.org/10.14311/AP.2020.60.0252.
18. Teutan, E., Stan, S., Oarcea, A., & Cobilean, V. (2022). Kinematic Analysis of the Cyclo-Variator Transmission Mechanism. Mechanika, 28(2), 139-144. ISSN 1392-1207.
19. Bogdanof, G. C., Moise,V., Visan, A. L., & Ciobanu, G. V. (2017). Kinematic analysis of soil drilling mechanism used in afforestation. Latvia University of Agriculture, 131, 653-658. https://doi.org/10.22616/ERDev2017.16.N131.
20. Koshel’, S. O., Dvorzhak, V. M., Koshel’, G. V., & Zalyubovskyi, M. G. (2022). Kinematic Analysis of Complex Planar Mechanisms of Higher Classes. International Applied Mechanics, 58(1), 111-122. https://doi.org/10.1007/s10778-022-01138-1.
Newer news items:
- Pipe production cost management model based on graph theory - 29/10/2024 18:14
- Establishing a plastic waste map using remote sensing data in the coastal area of Thanh Hoa province (Vietnam) - 29/10/2024 18:14
- Assessment of the efficiency of functioning of the environmental management system of enterprises - 29/10/2024 18:14
- Adequacy of measures to threats as one of the fundamental principles of safety riskology - 29/10/2024 18:14
- Analysis of natural and man-made factors of landslide development in the Carpathian region using GIS - 29/10/2024 18:14
- Justification of the safe parameters of recreational zones during the reclamation of watered residual quarry spaces - 29/10/2024 18:14
- Optimizing solar panel tilt angles across diverse Algerian terrain - 29/10/2024 18:14
- Aspects of Developing an Innovative, Energy-Efficient, LowEmission Co-Generator - 29/10/2024 18:14
- Saving energy resources during operation of rolling stock of underground electrified transport - 29/10/2024 18:14
- Methodology for determining the heat distribution in disc brakes of mine hoisting machines - 29/10/2024 18:14
Older news items:
- Substantiation of rational design parameters of a crusher with two movable jaws - 29/10/2024 18:14
- The concept of creating a maneuverable power plant based on a small modular reactor - 29/10/2024 18:14
- Analytical justification of the thermochemical interaction between blast reagents and carbon-containing products under the influence of magnetic fields - 29/10/2024 18:14
- Prediction of rock fragmentation in the Boukhadra’s mine conditions - 29/10/2024 18:14
- Mathematical model for heat transfer during underground coal gasification process - 29/10/2024 18:14
- Modeling of drilling tool vibration in the process of drilling blast wells - 29/10/2024 18:14
- Assessment of the oil and gas potential of the eastern edge of the Northern Ustyurt using new geophysical data - 29/10/2024 18:14