Efficiency and seismic safety of constructing underground structures in complex rock masses
- Details
- Category: Content №6 2023
- Last Updated on 23 December 2023
- Published on 30 November -0001
- Hits: 2040
Authors:
O.K.Ishchenko*, orcid.org/0000-0003-2449-5258, Dnipro University of Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
O.P.Strilets, orcid.org/0000-0003-2605-9353, Dnipro University of Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
* Corresponding author e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2023, (6): 067 - 072
https://doi.org/10.33271/nvngu/2023-6/067
Abstract:
Purpose. To develop new resource-saving method of underground construction and evaluate how effective it is, to set thresholds for safe seismic ground vibrations which accompany explosions during breaking in mine workings.
Methodology. The work used method of analysing mining and geological conditions of workings, field surveys of rock conditions in face, experiments are conducted on rock samples taken from blasting sites, more detailed data are obtained on rock properties, type and direction of development of crack systems along the workings cross-section by funneling method and approved research methods in accordance with current State Standards.
Findings. Research has been carried out to determine main features of physical and mechanical properties of rocks, fracture and tectonic structure of rock mass and development of fracture systems. According to the results of ejection funnel parameters, the anisotropy coefficient was calculated, and according to data on identification of crack systems and their density, fracture coefficient was calculated. The experimental data obtained were used to adjust rational distances between contour boreholes and along the entire cross-section of working face. Based on corrected drilling and blasting operations (DBO), experimental explosions were carried out in workings. It was established that the borehole utilisation rate (BUR) was 0.95–0.97, uniformity of rock mass crushing was achieved, and explosive material consumption was reduced by 10–15 %. Instrumental measurements of explosion impact in workings proved seismic ground vibrations at protected facilities amounted to 0.4 cm/s with a duration of 0.05 s, which did not exceed the State Standard.
Originality. Optimal DBO parameters are substantiated based on changes in numerical parameters of anisotropy and fracture coefficient, as well as radius of fracture zone along the cross-section of working face. The idea of forming a shielding zone along the contour of workings with explosive charges having an elongated symmetrical cut was confirmed and technically implemented.
Practical value. Laboratory and field research results are fundamental for designing borehole layouts along workings and refer to major initial data used to justify design parameters of blasting chart.
Keywords: blasthole, explosion, blasthole charge, face, rock, fracture
References.
1. Drover, C., & Villaescusa, E. (2019). A comparison of seismic response to conventional and face destress blasting during deep tunnel development. Journal of Rock Mechanics and Geotechnical Engineering, 11(5), 965-978. https://doi.org/10.1016/j.jrmge.2019.07.002.
2. Drover, C., Villaescusa, E., & Onederra, I. (2017). Face destressing blast design for hard rock tunnelling at great depth. Tunnelling and Underground Space Technology, 80, 257-268. https://doi.org/10.1016/j.tust.2018.06.021.
3. Mark, I., & Vlachopoulos, S. (2019). Assessment of strain bursting in deep tunnelling by using the finite-discrete element method. Journal of Rock Mechanics and Geotechnical Engineering, 11(1), 12-37. https://doi.org /10.1016/j.jrmge.2018.06.007.
4. Liu, R., Yang, J., Du, Yu., & Li, M. (2023). Influence of Blasting Disturbance on the Dynamic Stress Distribution and Fracture Area of Rock Tunnels. Journal Applied Sciences, 13(9), 5503. https://doi.org/10.3390/app13095503.
5. Petrenko, V., Bondarenko, N., Miroshnyk, V., Burskyi, M., & Konoval, V. (2022). Substantiating parameters of short-delay blasting and seismic safety while constructing the inclined tunnel. International Symposium on Earth Science and Technology – 2022: IOP Publishing Conference. Series: Earth and Environmental Science, 1156, 012010. https://doi.org/10.1088/1755-1315/1156/1/012010.
6. Simangunsong, G. (2021). Effect of Blasting Geometry and Water on Velocity of Detonation of Heavy ANFO Explosive. International Symposium on Earth Science and Technology, (pp. 102-107). Fukuoka, Japan: Kyushu University. Retrieved from https://www.researchgate.net/publication/369658191.
7. Ischenko, K. S., Zberovskiy, V. V., & Niskevich, A. N. (2012). New approaches to cutting cavity formation. Ugol Ukrainy, (7), 8-14.
8. Kaminskij, A. A., & Kurchakov, E. E. (2018). On the evolution of the pre-fracture zone at the crack tip in a nonlinear anisotropic body. Reports NAN of Ukraine, (10), 44-55. https://doi.org/10.15407/dopovidi 2018.10.044.
9. Kaminskij, A. A., & Kurchakov, E. E. (2019). On the transformation of the boundaries of passive deformation in a nonlinear elastic anisotropic body with a crack. Reports NAN of Ukraine, (9), 20-33. https://doi.org/10.15407/dopovidi2019.09.020.
10. Kim, J. G., & Song, J. J. (2015). Abrasive water jet cutting methods for reducing blast-induced ground vibration in tunnel excavation. International Journal of Rock Mechanics and Mining Sciences, (75), 147-158. https://doi.org/10.1016/j.ijrmms.2014.12.011.
11. Stockwell, M., & Tadic, D. (2010). Blasthole slotting: Reducing over breakage during coal mine blasting. Australian Mining Technology Conference: Technology Changing the Mining Business Footprint. CRC Mining, 47-56. Retrieved from https://espace.library.uq.edu.au/view/UQ:239049.
12. Xie, L. X., Lu, W. B., & Zhang, Q. B. (2017). Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses. Tunnelling and Underground Space Technology, (66), 19-33. https://doi.org/10.1016/j.tust.2017.03.009.
13. Jin, X., Liang, J., Fan, X., Chen, L., Wang, Q., Lu, Y., & Wang, K. (2023). A Study on Image Segmentation of Quarry Blast Fragments Based on U-CARFnet. PLoS ONE, 18(9), e0291115. https://doi.org/10.1371/journal.pone.0291115.
14. Mertz, N. H., Palangio, T. K., & Franklin, J. A. (2019). WipFrag Image-based granulometry system. Measurement of blast Fragmentation, 91-99. https://doi.org/10.1201/9780203747919-15.
15. BUDSTANDART (2009). DSTU 4704:2008 Conducting of industrial explosions. Norms of seismic safety. Retrieved from http://online.budstandart.com/ua/catalog/doc-page?id_doc=86092.
16. BUDSTANDART (2010). DSTU 7116:2009: Industrial explosions. Method for determining the actual seismic resistance of buildings and structures. Retrieved from http://online.budstandart.com/ru/catalog/doc-page.html?id_doc=26057.
17. BUDSTANDART (2014). DBN В.1.1-12:2014 Construction in seismic areas of Ukraine. Retrieved from http://online.budstandart.com/ua/catalog/doc-page.html?id_doc=58628.
Newer news items:
- Automated building damage detection on digital imagery using machine learning - 23/12/2023 01:29
- Methodology of creation and development of information systems for technological safety of mining facilities - 23/12/2023 01:29
- Legal support of labor protection standards under martial law - 23/12/2023 01:29
- Activities efficiency assessment of the governing body’s task force under environmental emergency - 23/12/2023 01:29
- Assessment of coal mining impact on the geoecological transformation of the Emerald network ecosystem - 23/12/2023 01:29
- Smart grid projects in the pan-European energy system - 23/12/2023 01:29
- Accounting for a positive, negative and zero sequences power in a three-phase unbalanced electrical system - 23/12/2023 01:29
- Study of leakage current in underground mine power network: a case study in mining in Vietnam - 23/12/2023 01:29
- A methodological approach to assessing the durability of welded structures of screens using SolidWorks Simulation software - 23/12/2023 01:29
- Mathematical models for determining and analyzing thermal regimes in mining industry mechanism structures - 23/12/2023 01:29
Older news items:
- Analysis and prediction of surface settlements during the digging of underground mining works (Algeria) - 23/12/2023 01:29
- Problems of operating heating boilers of increased environmental efficiency - 23/12/2023 01:29
- Recycling of barite ore tailings into porcelain: microstructure and dielectric properties - 23/12/2023 01:29
- Data analysis solutions to improve blasting efficiency in mining - 23/12/2023 01:29
- Mathematical substantiation and creation of information tools for optimal control of drilling and blasting in open-pit mine - 23/12/2023 01:29
- Managing the process of underground coal gasification - 23/12/2023 01:29
- Use of backscattering ultrasound parameters for iron ore varieties recognition - 23/12/2023 01:29
- Theoretical model of random freight flow distribution in the conveyor transport line of the coal mine - 23/12/2023 01:29
- Substantiation of the technological parameters of bucket-wheel excavator forward trench when mining titanium deposits - 23/12/2023 01:29