Analysis and prediction of surface settlements during the digging of underground mining works (Algeria)

User Rating:  / 0


M.A.R.Morsli*,, LAVAMINE Laboratory,Mining Department, Faculty of Earth Sciences, Badji Mokhtar University, Annaba, Algeria, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

S.Berdoudi,, LAVAMINE Laboratory,Mining Department, Faculty of Earth Sciences, Badji Mokhtar University, Annaba, Algeria

A.Hafsaoui,, Naturel ressources and planning Laboratory, University of Annaba, Annaba, Algeria

A.I.Kanli,, Istanbul University-Cerrahpasa, Istanbul,Turkey

M.Ferfar,, Environmental Research Center (C.R.E), Annaba, Algeria

* Corresponding author e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

повний текст / full article

Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2023, (6): 061 - 066


To analyze, study and predict surface settlements during the digging of a tunnel in an urban area located in the Algerian capital and to take the necessary measures.

Based on the physical and mechanical parameters and the geological characteristics of the actual traversed layer, and taking into account the geometric parameters of the tunnel, the mechanical model is established, and the numerical simulation is designed to determine the settlement deformation and displacement of the overlying zone under mining disturbance.

Due to the impact of the excavation works, the land will undergo large deformations such as collapse. So, it is necessary to take corrective measures to limit its effect on the surrounding environment and protect urban areas.

The application of a complex of methods allowed providing a predictive assessment of the safety of mining workings in urban conditions. The study was conducted in two main stages; a geotechnical characterization in situ and in the laboratory to determine the necessary properties of the soil and rock mass used in our model, and in a second step, the development of feedback analysis using numerical modelling based on the data collected.

Practical value.
From this study, the results obtained seem to show vertical displacements that exceed international standards in urban areas (1/1000, which can induce significant ground movements and therefore an influence on the surrounding environment. As a solution, there is a possibility of reducing the deformations by improving the mechanical properties of the soil carrying the project using the Jet-Grouting technique – the technique has shown its effectiveness in reducing settlements with a reduction rate of 78 %.

ground movement, underground structure, finite element method, stability modelling, geotechnical parameters


1. Protosenya, A. G., Alekseev, A. V., & Verbilo, P. E. (2022). Prediction of the stress-strain state and stability of the front of tunnel face at the intersection of disturbed zones of the soil mass. Journal of Mining Institute, 254, 252-260.

2. Ignatiev, S. A., Sudarikov, A. E., & Imashev, A. Zh. (2021). Determinations of the stress-strain state of rock mass and zone of inelastic deformation around underground mine excavation using modern methods of numerical modeling. Journal of Sustainable Mining, 20(3).

3. Alkhdour, A., Radkevych, A., Tiutkin, O., & Bondarenko, N. (2020). Prediction of the stress-strain state of circular workings in a layered massif by scaling. E3S Web of Conferences, 168, 00020.

4. Dhouib, A. (2023). Determination of the In-situ Geotechnical Parameters of Soils. Applied Geotechnics for Construction Projects 1.

5. Khan, Z., Yamin, M., Attom, M., & Nasser, A. (2022). Correlations between SPT, CPT, and Vs for Reclaimed Lands near Dubai. Geotechnical and Geological Engineering, 40, 4109-4120.

6. Sundaram, R., Gupta, S., Gupta, S., & Lal, B. (2019). Geotechnical Design Parameters for a Metro Tunnel from Pressuremeter Tests. In Sundaram, R., Shahu, J., Havanagi, V. (Eds.). Geotechnics for Transportation Infrastructure, 29.

7. Ameratunga, J., Sivakugan, N., & Das, B.M. (2016). Correlations of Soil and Rock Properties in Geotechnical Engineering. Springer, Berlin/Heidelberg, Germany.

8. Mbarak, W. K., Cinicioglu, E. N., & Cinicioglu, O. (2020). SPT based determination of undrained shear strength: Regression models and machine learning. Frontiers of Structural and Civil Engineering, 14, 185-198.

9. Firuzi, M., Asghari-Kaljahi, E., & Akgün, H. (2019). Correlations of SPT, CPT and pressuremeter test data in alluvial soils. Case study: Tabriz Metro Line 2. Bulletin of Engineering Geology and the Environment, 78, 5067-5086.

10. Kim, M., Okuyucu, O., Ordu, E., Ordu, S., Arslan, Ö., & Ko, J. (2022). Prediction of Undrained Shear Strength by the GMDH-Type Neural Network Using SPT-Value and Soil Physical Properties. Materials, 15(18), 6385.

11. Karasev, M. A., & Nguyen, T. T. (2022). Method for predicting the stress state of the lining of underground structures of quasi-rectangular and arched forms. Journal of Mining Institute, 257, 807-821.

12. Ebu Bekir, A. (2020). Evaluation of new Austrian tunnelling method applied to Bolu tunnel’s weak rocks. Journal of Rock Mechanics and Geotechnical Engineering, 12(3), 541-556.

13. Ebu Bekir, A., Servet, K., Suat, G., & Candan, G. (2022). Analytical and Numerical Analyses of the Support System for a Large-span Tunnel in Challenging and Seismically Active Ground Conditions. Transportation Infrastructure Geotechnology.

14. Md Shariful, I., & Magued, I. (2021). Twin tunnelling induced ground settlements. Tunnelling and Underground Space Technology, 110, 103614.

15. Kuanda, F., Zhiyong, Y., Yusheng, J., Zhengyang, S., & Zhenyong, W. (2020). Surface subsidence characteristics of fully overlapping tunnels constructed using tunnel boring machine in a clay stratum. Computers and Geotechnics, 125, 103679.

16. Ağbay, A., & Topal, T. (2019). Evaluation of twin tunnel-induced surface ground deformation by empirical and numerical analyses (NATM part of Eurasia tunnel, Turkey). Computers and Geotechnics, 119.

17. Serratrice, J.F., & Magnan, J.P. (2002). Analyse et prévision des tassements de surface pendant le creusement du tunnel nord de la traversée souterraine de Toulon. Bulletin des Laboratoires des Ponts et Chaussées, 237, 5-36. Retrieved from

18. Shaobing, Z., Siyue, H., Junling, Q., Wei, X., Rodney, S. G., & Lixin, W. (2020). Displacement Characteristics of an Urban Tunnel in Silty Soil by the Shallow Tunnelling Method. Advances in Civil Engineering, 2020, ID 3975745.

19. Tiutkin, O., & Bondarenko, N. (2022). Parametric analysis of the stress-strain state for the unsupported and supported horizontal underground workings. Acta Technica Jaurinensis, 15(4), 199-206.

20. Do, N.A., & Dias, D. (2017). A comparison of 2D and 3D numerical simulations of tunnelling in soft soils. Environmental Earth Sciences, 76, 102.



This Month
All days

Guest Book

If you have questions, comments or suggestions, you can write them in our "Guest Book"

Registration data

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Journal was registered by Ministry of Justice of Ukraine.
Registration number КВ No.17742-6592PR dated April 27, 2011.


D.Yavornytskyi ave.,19, pavilion 3, room 24-а, Dnipro, 49005
Tel.: +38 (056) 746 32 79.
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
You are here: Home Archive by issue 2023 Content №6 2023 Analysis and prediction of surface settlements during the digging of underground mining works (Algeria)