Parameterization of the statistical model for electrical energy efficiency control
- Details
- Category: Content №4 2023
- Last Updated on 28 August 2023
- Published on 30 November -0001
- Hits: 2555
Authors:
N.S.Dreshpak*, orcid.org/0000-0002-4453-1378, Dnipro University of Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
O.S.Dreshpak, orcid.org/0000-0003-1019-4382, Dnipro University of Technology, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
* Corresponding author e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2023, (4): 096 - 102
https://doi.org/10.33271/nvngu/2023-4/096
Abstract:
Purpose. Justification of a structural construction and parameters of a regression model for the normalization of specific energy consumption when controlling the production process energy efficiency.
Methodology. Analysis of the peculiarities of energy efficiency control of the production process in conditions of frequent and significant changes in specific energy consumption, followed by the determination of the structure and parameters of the regression model.
Findings. Based on the presence of frequent and significant changes in the energy efficiency control of the production process, the reasonableness of normalizing the specific energy consumption by using the regression model with a variable structure is substantiated. The actual daily specific energy consumption indicators, obtained during the month to control energy consumption efficiency and build the regression model of the variable structure, are used. The limited possibilities for the formation of voluminous statistical samples with homogeneous data, and the complexity and laboriousness of measuring a significant number of influence parameters make it necessary to reduce the number of explanatory variables of the regression model. The feasibility of using the value of the output volume, as a comprehensive characteristic of the level of energy consumption, is proven. The acceptability of the application of linear and non-linear univariate regression dependencies is determined. The nonlinear model, as a result of reducing the linear model of energy consumption to a nonlinear form characteristic of the values of its specific consumption, is obtained.
Originality. For the first time, the use of the regression model of the variable structure for the normalization of specific energy consumption in conditions of frequent and significant changes in the energy efficiency of the production process, which helps to increase the accuracy of their determination, is proposed. The need to reduce the number of explanatory variables of the regression model is proven. The expediency of using linear or non-linear one-factor regression dependencies in the given conditions of energy efficiency control, which helps to simplify the procedure of registering the initial data for their construction, is confirmed.
Practical value. The scientific results of the performed studies allow for taking into account the peculiarities of the production conditions when determining the structure and parameters of the regression model for normalizing the specific energy consumption. This contributes to increasing the accuracy and energy efficiency control of the production process.
Keywords: energy efficiency control, specific energy consumption, regression dependence, model parameterization, normalization methods
References.
1. Verkhovna Rada of Ukraine (2021). About energy efficiency. 1818-IX§ section I Article 5. Retrieved from https://zakon.rada.gov.ua/laws/show/1818-20#Text.
2. Government portal (2016). Ukraine has adopted national standards for energy audit and energy management in accordance with European norms. Retrieved from https://www.kmu.gov.ua/news/249113427.
3. ISO 50001:2018, IDT. Energy Management Systems – Requirements with Guidance for Use – Guidelines (2018). Retrieved from https://www.iso.org/obp/ui/#iso:std:iso:50001:ed-2:v1:en.
4. Implementation of the standard of energy management systems in the industry of Ukraine: UNIDO/GEF Project (2015). Retrieved from http://www.ukriee.org.ua/uk/proekt/meta-proekta.
5. ISO 50001 Benefits for Manufacturers (2019). Retrieved from https://www.plantengineering.com/articles/iso-50001-benefits-for-manufacturers/.
6. Palekhova, L., & Simon, S. (2016). Competitive advantages through the implementation of international energy management standards. Bulletin of the Dnieper State Academy of Construction and Architecture, 3, 42-51.
7. Dreshpak, N. S. (2020). Energy efficiency control systems of production processes and ways of their improvement. Electrical Engineering and Power Engineering, 1, 40-48. https://doi.org/10.15588/1607-6761-2020-1-5.
8. Dreshpak, N. S., Dreshpak, O. S., & Vypanasenko, S. I. (2021). Specific standards of energy consumption in the problem of controlling its use efficiency Electrical Engineering and Power Engineering, 3, 31-39. https://doi.org/10.15588/1607-6761-2021-3-3.
9. Shulle, Yu. A., & Rogozyanskmiy, I. S. (2016). The use of AMR to increase the efficiency of energy use at industrial enterprises. Information Technologies and Computer Engineering, 1, 59-63.
10. Verkhovna Rada of Ukraine (2018). Code of commercial accounting of electric energy. No 311§, Section I 1.2. Retrieved from https://zakon.rada.gov.ua/laws/show/v0311874-18#Text.
11. Dreshpak, O. S., Dreshpak, N. S., & Vypanasenko, S. I. (2022). Technology of Raw Materials Enrichment of Inhomogeneous Carbonate Deposits and Evaluation of its Energy Efficiency: Multi-authored: monograph, (pp. 194-214). Romania: UNIVERSI-TAS Publishing. https://doi.org/10.31713/m1107.
12. Chung, S., Park, Y., & Cheong, T. (2020). A mathematical programming approach for integrated multiple linear regression subset selection and validation. Pattern Recognition, 108, 1-25. https://doi.org/10.1016/j.patcog.2020.107565.
Newer news items:
- Adaptation of the controlling system of the machine-building enterprise to change in strategic goals - 28/08/2023 20:15
- Financial security of macro regions in the period of military aggression - 28/08/2023 20:15
- Analysis of digitalization changes and their impact on enterprise security management under uncertainty - 28/08/2023 20:15
- Impact of digital transformation on business structures - 28/08/2023 20:15
- Investigation of combined ensemble methods for diagnostics of the quality of interaction of human-machine systems - 28/08/2023 20:15
- Сompetitiveness assessment of the railway network of Кazakhstan in the performance of transit container transportation - 28/08/2023 20:15
- Utilization of the secondary resources of titanium-zirconium pits when constructing highways - 28/08/2023 20:15
- The role of the formation of the environmental management system in the improvement of international economic relations - 28/08/2023 20:15
- Improving a process of managing dynamic occupational risks - 28/08/2023 20:15
- Soil contamination status using contamination indicators and the health risk - 28/08/2023 20:15
Older news items:
- Energy transition: the future of energy on the base of smart specialization - 28/08/2023 20:15
- Designing the working surfaces of rotary planetary mechanisms - 28/08/2023 20:15
- Improvement of the service life of mining and industrial equipment by using friction modifiers - 28/08/2023 20:15
- Hydrodynamics of vapor-liquid flows in curvilined channels of separation devices of power plants - 28/08/2023 20:15
- Substantiating a method for computer analysis of the stress-strain state of the tubbing erector manipulator mechanism - 28/08/2023 20:15
- Application of the stereomicrophotogrammetric method for the complex study of the Al-Cu-Mg alloys system - 28/08/2023 20:15
- Magnetic stimulation of chemical reactions in coal - 28/08/2023 20:15
- Selection and justification of drilling and blasting parameters using genetic algorithms - 28/08/2023 20:15
- Improving the technology of extracting coal concentrate from fly ash from thermal power plants - 28/08/2023 20:15
- A new mining method for reopening the opencast mine of Kef Essennoun - 28/08/2023 20:15