On the mechanism of ionization of atoms at compression of a substance by front of the converging shock wave

User Rating:  / 0
PoorBest 

Authors:


V.V.Sobolev, orcid.org/0000-0003-1351-6674, Dnipro University of Technology, Dnipro, Ukraine, email: This email address is being protected from spambots. You need JavaScript enabled to view it.

S.M.Hapieiev, orcid.org/0000-0003-0203-7424, Dnipro University of Technology, Dnipro, Ukraine, email: This email address is being protected from spambots. You need JavaScript enabled to view it.

O.V.Skobenko, orcid.org/0000-0003-4606-4889, Dnipro University of Technology, Dnipro, Ukraine, email: This email address is being protected from spambots. You need JavaScript enabled to view it.

V.V.Kulivar, orcid.org/0000-0002-7817-9878, Dnipro University of Technology, Dnipro, Ukraine, email: This email address is being protected from spambots. You need JavaScript enabled to view it.

A.V.Kurliak, orcid.org/0000-0002-9928-0406, Enterprise Research-Industrial Complex Pavlohrad Chemical Plant, Pavlohrad, Dniproperovsk Region, Ukraine


повний текст / full article



Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2022, (3): 057 - 066

https://doi.org/10.33271/nvngu/2022-3/057



Abstract:



Purpose.
To study changes in the microstructure of metals after exposure to high-energy plasma jets formed by the cumulation of gas-dynamic flows in a conical target. To estimate the expected state of matter in a strong shock wave compression, taking into account the change in volumetric energy density at the moment of transformation of a solid body plasma into nuclear matter.


Methodology.
The technique of laser initiation of a profiled front of detonation waves in explosive charges and the corresponding profile of shock waves in materials, methods and techniques for measuring the dynamic parameters of shock-compressed substances are used.


Findings.
An experimental study on the physicochemical state of a substance that has been processed with extremely high pressures and temperatures during compression by converging shock waves in conical targets has been carried out. Scientific results of physical and mathematical modelling of converging shock waves are analysed.


Originality.
For the first time, the formation of symmetric plasma jets during gas compression in conical targets has been experimentally observed. For the first time, metallo-physical studies on the microstructure of cast iron and steel have been carried out. These studies were made after the action of high-energy dense plasma jets with a temperature of (2.52.8) × 106K and a pressure 1.12 × 1012 arising from the collision of the jet with a barrier. Iron-55 and copper-64 isotopes were found in the cast iron microstructure near the surface formed by the action of the plasma jet. The main components of the plasma jet were gaseous oxygen, nitrogen, argon, and atomic iron, copper and gold. The fact of formation of isotopes is the result of nuclear reactions. One of the main conditions for the implementation of such reactions is a dense high-temperature plasma. It is assumed that under the action of a strong shock wave in a conical target, in addition to the synthesis reaction, other nuclear reactions with heavy elements can be realized. The ideas about the expected state of matter in a compression shock wave are presented, taking into account the change in the volumetric energy density at the moment of transformation of a solid body plasma into nuclear matter.


Practical value.
The proposed technique for conducting experimental studies on a shock-compressed substance under the action of extreme temperatures and pressures in conical targets using laser initiation of chemical explosives is of practical importance. The idea of the expected state of matter in the shock wave is also important.



Keywords:
explosion, shock wave, conical target, thermonuclear temperature, plasma, isotopes, nuclear reactions

References.


1. Inozemtseva, O.A., Voronin, D.V., Petrov, A.V., Petrov, V.V., Lapin, A.S., Kozlova, A.A., , & Gorin, D.A. (2019). Destruction of the shells of polymer and composite microcapsules under the action of high-intensity focused ultrasound. Kolloidnyy zhurnal, 81(1), 49-60. https://doi.org/10.1134/S0023291219010075.

2. Volkov, N.B., Mayyer, A.Ye., Talala, K.A., & Yalovets, A.P. (2006). On the mechanism of formation of microcraters on the surface of a target irradiated by a powerful electron beam. Pisma v zhurnal tekhnicheskoy fiziki, 32(10), 20-28.

3. Artemenko, I.I., Golovanov, A.A., Kostyukov, I.Yu., Kukushkina,T.M., Lebedev, V.S., Nerush, Ye.N., Samsonov, A.S., & Serebryakov, D.A. (2016). Plasma formation and dynamics in superstrong laser fields with allowance for radiation and quantum electrodynamic effects. Pisma v Zhurnal eksperimentalnoy i teoreticheskoy fiziki, 104(12), 892-902. https://doi.org/10.7868/S0370274X16240139.

4. Sokolov, I.V. (1990). Hydrodynamic cumulative processes in plasma physics. Uspekhi fizicheskikh nauk, 160(11), 143-166.

5. Sobolev, V.V., & Usherenko, S.M. (2006) Shock-wave initiation of nuclear transmutation of chemical elements. Journal De Physique, IV: JP 134, August 2006, 977-982. https://doi.org/10.1051/jp4:2006134149.

6. Sobolev, V., Cabana, E.C., Howaniec, N., & Dychkovskyi, R. (2020). Estimation of Dense Plasma Temperature Formed under Shock Wave Cumulation. Materials, 13(21), 4923, 1-9. https://doi.org/10.3390/ma13214923.

7. Sobolev, V.V., Baskevich, A.S., Shiman, L.N., & Usherenko, S.M. (2016). Mechanism of thick metal walls penetration by high-speed microparticles. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 75-83.

8. Usherenko, S.M. (1998). Superdeep penetration of particles into barriers and creation of composite materials. Minsk: NII IP s OP.

9. Usherenko, S.M. (2001). Ideas about the effect of superdeep penetration. Sbornik nauchnykh trudov Natsionalnoy Gornoy Akademii Ukrainy, 3(11), 13-23.

10. Adamenko, S.V., Adamenko, A.S., & Vysotskii, V.I. (2004). Full-range nucleosynthesis in the laboratory Stable Superheavy Elements: Experimental Results and Theoretical Descriptions. Infinite Energy, 5(4), 1-8.

11. Adamenko, A.S., Adamenko, S.V., & Bulyak, Ye.V. (2005). Experimental studies of a convergent density wave in a cylindrical anode of a high-current diode. Pisma v zhurnal tekhnicheskoy fiziki, 31(10), 24-29.

12. Adamenko, S., Esaulov, A., Ulmen, B., Novikov, V., Ponomarev,S., Adamenko, A., , & Novikov, D. (2015). Exploring new frontiers in the pulsed power laboratory: Recent progress. Results in Physics, 3, 62-68. https://doi.org/10.1016/j.rinp.2015.02.005.

13. Derentovich, G. (1989). Strong compression of matter by cumulating the energy of explosives. Prikladnaya matematika i tekhnicheskaya fizika, (4), 23-35.

14. Anisimov, S.A., Bespalov, V.Ye., Vovchenko, V.I., Dromin,A.N., Dubovitskiy, F.I., Zharkov, A.P., , & Shur, L.N. (1980). Generation of neutrons upon explosive initiation of a DD reaction in conical targets. Pisma v zhurnal eksperimentalnoy i teoreticheskoy fiziki, 31(1), 67-70.

15. Voytenko, A.Ye., & Sverdlichenko, B.V. (1989). Formation of a crater in a metal by an impact of a high-enthalpy plasma. Prikladnaya mekhanika i tekhnicheskaya fizika, (6), 19-22.

16. Tsarov, V.A. (1990). Low-temperature nuclear synthesis. Uspekhi fizicheskikh nauk, 160(11), 1-53.

17. Zeldovich, Ya.B. (1985). Selected works. Particles, nuclei, Universe. Moscow: Nauka.

18. Adamenko, S.V., Bereznyak, P.A., & Mikhaylovskiy, I.M. (2001). Initiation of an electric vacuum discharge by accelerated nanoparticles. Pisma v zhurnal tekhnicheskoy fiziki, 27(16), 15-20.

19. Adamenko, S.V., Selleri, F., & Van der Merwe, A. (2007). Controlled Nucleosynthesis. Breakthroughs in Experiment and Theory. Series: Fundamental theories in Physics, 156(11). Springer.

20. Ovchinnikov, V.I., Doroshkevich, Ye.A., Belous, A.I., Petlitskaya,T.V., Reut, O.P., & Usherenko, S.M. (2007). Effects of electromagnetic radiation observed under loading conditions with a high-energy flux of powder particles, (pp. 153-160). Fizika i tekhnika vysokoenergeticheskoy obrabotki materialov. Dnepropetrovsk: Art-Press.

21. Marukovich, Ye.I., Usherenko, Yu.S., & Usherenko, S.M. (2021). Dynamic modification of metals: monograph. Minsk: Belaruskaya navuka.

22. Adamenko, S.V., & Vysotskii, V.I. (2004). Evolution of Annular Self-controlled ElectronNucleus Collapse in Condensed Targets. Foundations of Physics, 34, 1801-1831.

23. Fleishmann, M., Pons, S., & Hawkins, M. (1989). Electrochemically induced nuclear fusion of deuterium. Journal of Electroanalytical Chemistry, 261, 301-308.

24. Timashev, S.F. (2017). On the mechanisms of low-energy nuclear-chemical processes. Radioelektronika, nanosistemy. Informatsionnyye tekhnologii (RENSIT), 9(1), 37-51. https://doi.org/10.17725/rensit.2017.09.037.

25. Savvatimova, I. (2011). Transmutation of elements in low-energy glow discharge and the associated processes. Condensed Matter Nuclear Science, (8), 1-19.

26. Voytenko, A.Ye., & Sobolev, V.V. (2012). On the estimation of the temperature of high-speed plasma jets formed in explosive generators. In Shock waves in condensed media, (pp. 238-246). Kyiv: Interpres LTD. Retrieved from http://ru.combex.org/conf_files/SWCM-2012.pd.

27. Sobolev, V.V., & Usherenko, S.M. (2008). Formation of chemical elements under superdeep penetration of lead microparticles in ferrous target. Advanced Materials Research, 47-50, part 1, 25-28. Hong Kong, P.R.; China. Retrieved from https://www.scientific.net/AMR.47-50.25.

28. Sobolev, V.V., Bilan, N.V., Baskevich, A.S., & Stefanovich, L.I. (2018). Electrical charges as catalysts of chemical reactions on a solid surface. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 50-58. https://doi.org/10.29202/nvngu/2018-4/7.

29. Timashev, S.F. (2015). Radioactive decay of nuclei as an initiated nuclear-chemical process: phenomenology. Zhurnal fizicheskoy khimii, 89(11), 1810-1822.

30. Gubenko, S.I., Sobolev, V.V., & Slobodskoy, V.Ya. (1987). Structural changes in metal alloys treated with high-energy gas jets. In Izmeneniye svoystv materialov pod deystviyem vysokikh davleniy, (pp. 127-133). Kyiv: Institut problem materialovedeniya.

31. Voytenko, A.Ye. (2001). On the question of the limiting temperature in explosive plasma generators. Sbornik nauchnykh trudov Natsionalnoy Gornoy Akademii Ukrainy, 3(11), 5-9.

32. Chernai, A.V., Sobolev, V.V., Chernaj, V.A., Ilyushin, M.A., & Dlugashek, . (2003). Laser ignition of explosive compositions based on di-(3-hydrazino-4-amino-1,2,3-triazole)-copper(II) perchlorate. Combustion, Explosion and Shock Waves, 39(3), 335-339.

33. Gerasimov, S.I., Ilyushin, M.A., Kuznetsov, P.G., Putis, S.M., Dushenok, S.A., & Rozhentsov, V.S. (2021). Initiation of Detonation by a Light Pulse in a Thin Charge of the VS-2 Pyrotechnic Composition. Technical Physics Letters, 47, 111-113. https://doi.org/10.1134/S1063785021020048.

34. Sobolev, V.V., Taran, Y.N., & Gubenko, S.I. (1997). Shock wave use for diamond synthesis. Journal De Physique, 7(3), C3-73-C3-75. Retrieved from https://hal.archives-ouvertes.fr/jpa-00255438 Submitted on 1 Jan 1997.

35. Chernaj, A.V., & Sobolev, V.V. (1995). Laser method of profiled detonation wave generation for explosion treatment of materials. Fizika i Khimiya Obrabotki Materialov, (5), 120-123.

36. Sobolev, V.V., & Bilan, N.V. (2018). Physical conditions of the light core formation and thermonuclear heat source deep inside the earth. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 13-23. https://doi.org/10.29202/nvngu/2018-5/1.

37. Sobolev, V.V., Gubenko, S.I., Rudakov, D.V., Kyrychenko, O.L., & Balakin, O.O. (2020). Influence of mechanical and thermal treatments on microstructural transformations in cast irons and properties of synthesized diamond crystals. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 53-62. https://doi.org/10.33271/nvngu/2020-4/053.

38. Altshuler, L.V., Trunin, R.F., Urlin, V.D., & Fortov, V.Ye. (1999). Development in Russia of dynamic methods for studying high pressures. Uspekhi fizicheskikh nauk, 169(3), 323-344.

39. Kanel, G.I., Fortov, V.Ye., & Razorenov, S.V. (2007). Shock waves in condensed matter physics. Uspekhi fizicheskikh nauk, 177(8), 809-830.

40. Trunin, R.F. (Ed.) (1992). Properties of condensed matter at high pressures and temperatures. Arzamas: VNII eksperimentalnoy fiziki.

41. Kanel, G.I., Razorenov, S.V., Utkin, A.V., & Fortov, V.Ye. (1996). Shock-wave phenomena in condensed media. Moscow: Yanus-K.

42. Orlenko, L.P. (Ed.) (2004). Explosion physics (3rd ed.) Moscow: Fizmalit.

43. Milyavskiy, V.V., Fortov, V.Ye., Frolova, A.A., Khishchenko,K.V., Charakhchyan, A.A., & Shurshalov, L.V. (2010). On the mechanism of pressure increase with increasing porosity of media shock-compressible in conical and cylindrical targets. Zhurnal vychislitelnoy matematiki i matematicheskoy fiziki, 50(12), 2195-2207.

44. Charakhchyan, A.A., Khitsenko, K.V., Milyavskiy, V.V., Fortov,U.V., Frolova, A.A., Lomonosov, I.V., & Shurshalov, L.V. (2005). Numerical study of converging shock waves in porous media. Zhurnal tekhnicheskoy fiziki, 75(8), 15-25.

45. Nemchinov, I.V., Trubetskaya, I.A., & Shuvalov, V.V. (1984). Explosion in a limited volume of gas under strong radiation. Prikladnaya matematika i tekhnicheskaya fizika, (6), 108-112.

46. Nedostup, V.I., & Galkevich, Ye.P. (2000). Equations of state for helium, hydrogen, deuterium, nitrogen, oxygen, carbon monoxide, carbon dioxide, methane at high temperatures and pressures. Teplotekhnika vysokikh temperatur, 38(3), 397-401.

47. Bogdanov, E.N., Zhernokletov, M.V., Kozlov, G.A., & Rodionov, A.V. (2020). Study of shock-compressed argon plasma using microwave diagnostics. Combustion, Explosion, and Shock Waves, 56(4), 479-485. https://doi.org/10.1134/S0010508220040127.

48. Fortov, V.Ye. (1982). Dynamic methods in plasma physics. Uspekhi fizicheskikh nauk, 138(3), 361-412. Retrieved from https://docplayer.com/78969182-Uspehi-fizicheskih-dinamicheskie-metody-v-fizike-plazmy-v-e-fortov.html.

49. Kondrikov, B.N., & Sumin, A.I. (1987). The equation of state of gases at high pressure. Fizika goreniya i vzryva, (1), 114-122.

50. Mader, S.L. (1998). Numerical Modeling of Explosives and Propellants (2nd ed.). CRC Press.

51. Zeldovich, Ya.B., & Rayzer, Yu.P. (2008). Physics of shock waves and high-temperature hydrodynamic phenomena. Moscow: Fizmatlit.

52. Ogorodnikov, V.A., Mikhaylov, A.L., & Burtsev, V.V. (2009). Registration of particle ejection from the free surface of shock-loaded specimens. Zhurnal eksperimentalnoy i teoreticheskoy fiziki, 136(9), 1-9.

53. Sobolev, V., & Hove, I. Hogset (1997). Phenomenon of spiral vortex formation over the shock wave front. Journal De Physique, IV, 7(3), 127-129. Retrieved from https://hal.archives-ouvertes.fr/jpa-00255481.

54. Romanov, G.S., & Urban, V.V. (1982). Numerical simulation of an explosive plasma generator taking into account radiation energy transfer and wall evaporation. Inzhenerno-fizicheskiy zhurnal, 43(6), 1012-1019. Retrieved from http://www.itmo.by/publications/jepter/bibl/?ELEMENT_ID=11682.

55. Danilenko, V.V. (2010). Explosion: physics, technique, technology. Moscow: Energoatomizdat.

56. Butyagin, P.Yu. (1984). Structural softening and mechanochemical reactions in solids. Uspekhi khimii, 53(2), 1769-1789.

57. Landau, L.D., & Lifshits, Ye.M. (2012). Quantum mechanics. Moscow: Nauka.

58. Voronin, A.I., & Osherov, V.I. (1990). Dynamics of molecular reactions. Moscow: Nauka.

59. Zababakhin, Ye.I., & Zababakhin, I.Ye. (1988). The phenomenon of unlimited cumulation. Moscow: Nauka.

60. Antsyferov, P.S., & Dorokhin, L.A. (2017). Scaling of a fast spherical discharge. Plasma Physics Reports, 43(2), 164-169.

61. Sobolev, V.V.. Skobenko, O.V., Usyk, I.I., Kulivar, V.V., & Kurliak, A.V. (2021). Formation of converging cylindrical detonation front. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 49-56. https://doi.org/10.33271/nvngu/2021-6/049.

62. Pujol, M., Marty, B., Burnard, ., & Philippot, P. (2009). Xenon in Archean barite: Weak decay of130Ba, mass-dependent isotopic fractionation and implication for barite formation. Geochimica et Cosmochimica Acta, 73, 6834-6846. https://doi.org/10.1016/j.gca.2009.08.002.

63. Aprile, E., Aalbers, J., & Agostini, F. (2019). Observation of two-neutrino double electron capture in124Xe with XENON1T. Nature, 568, 532-535. https://doi.org/10.1038/s41586-019-1124-4.

64. Tiba, A., Yegorov, A.Yu., Berdnikov, Ya.A., & Lomasov, V.N. (2021). opper-64 isotope production through the cyclotron proton irradiation of the natural-nickel target. Nauchno-tekhnicheskiye vedomosti SPbGPU. Fiziko-matematicheskiye nauki, 14(1), 138-146. https://doi.org/10.18721/JPM.14110.

 

Visitors

7669876
Today
This Month
All days
1499
73507
7669876

Guest Book

If you have questions, comments or suggestions, you can write them in our "Guest Book"

Registration data

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Journal was registered by Ministry of Justice of Ukraine.
Registration number КВ No.17742-6592PR dated April 27, 2011.

Contacts

D.Yavornytskyi ave.,19, pavilion 3, room 24-а, Dnipro, 49005
Tel.: +38 (066) 379 72 44.
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
You are here: Home Archive by issue 2022 Content №3 2022 On the mechanism of ionization of atoms at compression of a substance by front of the converging shock wave