Electrical charges as catalysts of chemical reactions on a solid surface
- Details
- Category: Solid State Physics, Mineral Processing
- Last Updated on 18 September 2018
- Published on 27 August 2018
- Hits: 3508
Authors:
V. V. Sobolev, Dr. Sc. (Tech.), Prof., orcid.org/0000-0003-1351-6674, National Mining University, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
N. V. Bilan, Cand. Sc. (Geol.), Assoc. Prof., orcid.org/0000-0002-4086-7827, National Mining University, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
O. S. Baskevych, Cand. Sc. (Phys.-Math.), Senior Research Fellow, orcid.org/0000-0002-3227-5637, State Higher Educational Institution “Ukrainian State University of Chemical Engineering”, Dnipro, Ukraine, e‑mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
L. I. Stefanovich, Dr. Sc. (Phys.-Math.), Senior Research Fellow, orcid.org/0000-0003-2534-8479, Institute of Physics for Mining Processes of the National Academy of Science of Ukraine, Dnipro, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Abstract:
Purpose. To determine the change dependency of the potential energy of the chemical bond of a diatomic molecule on the value of the point charge and its distance to the bond using quantum mechanical calculation.
Methodology. Numerical simulation of a quantum mechanical system consisting of a point charge and a diatomic molecule interacting with each other.
Findings. The quantum-mechanical problem of the effect of an external Coulomb center on the chemical bond of diatomic molecules is solved.
Originality. A quantum mechanical model of a physical system consisting of three interacting Coulomb centers (there is a chemical bond between two of them) is developed. The model makes it possible to understand the dynamics of the interaction of a molecule with an ion, the charge of which can be characterized by either integers or fractional numbers. The change in the energy of the chemical bond in the ion field depending on the distance to the bond and the magnitude of the charge is established.
Practical value. The developed technique for calculating the energy of a chemical bond as a function of the magnitude of the electric charge was used in the development of the method for growing single crystals of metastable diamond, in calculating the limits of the chemical bond stability in metal azides, in developing the way of additional harmful gases formation during rock blasting and in calculating the stability of nanoscale hydrocarbon chains in coal, and others. The method can be used to decide on the catalyst and control the catalytic reactions.
References.
1. Kartel, N. T. and Lobanov, V. V., eds., 2015. Physics of Surface (in 2 volumes). In: Physics and Chemistry of Surface. Kyiv: Interservis. Book 1.
2. Sychov, M. M., Minakova, T. S., Slizhov, Ju. G. and Shilova, O. A., 2016. Acid-basic characteristics of the surface of solids and properties control of materials and composites. St. Petersburg: Himizdat.
3. Rimola, A., Costa, D., Sodupe, M., Lambert, J.F. and Ugliengo, P., 2013. Silica Surface Features and Their Role in the Adsorption of Biomolecules: Computational Modeling and Experiments. Chem. Rev., 113(6), pp. 4216 – 4313. DOI: 10.1021/cr3003054.
4. Terebinska, M. I. and Lobanov, V. V., 2008. Dissociate Adsorption of Water Molecule on Unrelaxed (111) and (100) Faces of Crystalline Silicon. Physics and chemistry of solid state [pdf], 9(1), pp. 135–137. Available at: <http://www.pu.if.ua/inst/phys_che/start/pcss/vol9/0901-21.pdf> [Accessed 11 April 2017].
5. Shugalei, I. V., Sudarikov, A. M., Voznyakovskii, A. P., Tselinskii, I. V., Garabadzhiu, A. V. and Ilyushin M. A., 2012. Chemistry of the surface of detonation nanodiamonds as a basis for creating biomedical products. St. Petersburg: Pushkin Leningrad State University [online]. Available at: <https://search.rsl.ru/ru/record/01006552987> [Accessed 25 May 2017].
6. Yakovlev, R. Y., Kulakova, I. I., Badun, G. A., Lisichkin, G. V., Valueva, A. V., Seleznev, N. G. and Leonidov, N. B., 2016. Physical-chemical principles of the preparation of hybrid materials on the basis of detonation nanodiamonds as a new generation drug delivery systems and their properties. Drug Developments & Registration, 3(16), pp. 60‒66.
7. Huzihiro Araki, Berthold-Georg Englert, Leong-Chuan Kwek and Jun Suzuki, eds., 2010. Mathematical Horizons for Quantum Physics. Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore: Volume 20.
8. Ertl, G., 2007. Chemical Processes on Solid Surfaces. Scientific Background on the Nobel Prize in Chemistry. Stockholm, Sweden [pdf]. Available at: <https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2007/advanced-chemistryprize2007.pdf> [Accessed 24 February 2017].
9. Kim, M., Bertram, M., Pollmann, M., von Oertzen, A., Mikhailov, A.S., Rotermund, H.H. and Ertl, G., 2001. Controlling chemical turbulence by global delayed feedback: Pattern formation in catalytic CO oxidation on Pt(110). Science, 292, рр. 1357‒1360. DOI: 10.1126/science.1059478.
10. Ertl, G., 2017. Molecules at Solid Surfaces: A Personal Reminiscence. Annual Review of Physical Chemistry, 68, pp. 1–17. DOI: 10.1146/annurev-physchem- 052516-044758.
11. Gebert, S., Cai, Y. and Kniep, B., 2012. Highly efficient catalysts for ammonia synthesis AмоMах by Süd-Chemie company. Kataliz v promyshlennosti, 4, pp. 13‒17. DOI:10.18412/1816-0387-2012-4-13-17.
12. Alducin, M., Dı´ez Muino, R., Busnengo, H. F. and Salin, A., 2006. Why N2 Molecules with Thermal Energy Abundantly Dissociate on W(100) and Not on W(110). Рhysicalreview letters, 97, 056102 (4). DOI: 10.1103/PhysRevLett.97.056102.
13. Sobolev, V. V., Bilan, N. V. and Khalymendyk, A. V., 2017. Оn formation of electrically conductive phases under electrothermal activation of ferruginous carbonates. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, pp. 27–35.
14. Soboliev, V., Bilan, N. and Samovik, D., 2013. Magnetic stimulation of transformations in coal. In: Annual Scientific-Technical Collection – Mining of Mineral Deposits. CRC Press/Balkema, pp. 221–225.
15. Sobolev, V. V., Baskevich, A. S., Shiman, L. N. and Usherenko, S. M., 2016. Mechanism of thick metal walls penetration by high-speed microparticles. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, pp. 74–82.
16. Sobolev, V. V. and Usherenko, S. M., 2006. Shock-wave initiation of nuclear transmutation of chemical elements. J. Phys. IV France. 134, August 2006. EURODYMAT 2006 ‒ 8 thInternational Conference on Mechanical and Physical Behaviour of Materials under Dynamic Loading.pp. 977‒982. DOI: 10.1051/jp4: 2006134149.
17. Dychkovskyi, R. O., 2015. Determination of the rock subsidence spacing in the well underground coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 6, pp. 30‒36.
18. Caceres, E. and Alca, J. J., 2016. Potential For Energy Recovery From A Wastewater Treatment Plant. IEEE Latin America Transactions, 14(7), pp. 3316‒3321. DOI:10.1109/tla.2016.7587636.