The research of electromagnetic and thermoelectric processes in the AC and DC graphitization furnaces

User Rating:  / 0


D.S. Yarymbash, Cand. Sci. (Tech.), Associate Professor, Zaporizhzhya National Technical University, Senior Lecturer of the Department of Electricity Supply of Industrial Enterprises, Zaporizhzhya, Ukraine.


Purpose. The investigation of regimes, 3D modeling and finite element method calculation of conjugate electromagnetic, electrothermal, heat and mass transfer processes of graphitization, the distribution of current density and power heating density at AC and DC graphitization, which are taken into account the constructions of graphitization furnace, core and packages of electric buses, the temperature dependence of electro, thermal and mass transfer properties.

Methodology. Numerical modeling of the conjugate three-dimensional electromagnetic and heat fields in the Acheson graphitization furnaces and electrode blanks by finite element method (FEM), the theory of electromagnetic fields, heat and mass transfer.

Findings. The theoretical research and modeling of electromagnetic and thermoelectric processes by numerical finite element method realization of the generalized three-dimensional models of DC and AC graphitization are proposed. The features of electromagnetic, electrothermal and heat-mass transfer processes in the graphitization furnace, core, and side bus packages of furnace loops are taken into account. It was established by researches that the increase of AC graphitization specific capacity in the end areas of blanks are achieved by surface effect in the core and of external surface effect of the side bus packages. It will allow to align the temperature distribution in the electrode blanks, to decrease the temperature differences, and to provide the higher level of electrode quality as compared with DC graphitization.

Originality. The character and laws of the distribution of current density and specific electrical losses in the core and electrode blanks during DC and AC graphitization, and their quantitative differences in the main and end areas of the core are determined.

Practical value. The three-step mode of the graphitization power input by the core temperature criteria is substantiated. The first phase is the DC until mean core temperature 1000°C, the second phase is the AC heating from temperature 1000 to 3000°C, the third phase is the ending phase of DC graphitization. This will reduce electricity consumption on the reactive power compensation on 70–75% during the campaign graphitization and energy consumption per ton of finished product on 4,2–4,5%. The developed technological approaches and regimes can be used in mining and metals production sector and related industries.


1. Кузнецов Д.М. Процесс графитации углеродных материалов. Современные методы исследования / Кузнецов Д.М., Фокин В.П. – Новочеркасск: ЮРГТУ, 2001. – 132 с.

Kuznetsov, D.M. and Fokin, V.P. (2001), Protsess grafitatsyi uglerodnykh materialov. Sovremennye metody issledovaniya [The Process of Graphitization of Carbon Materials. Modern Methods of Investigation], JuRGTU, Novocherkassk.

2. Кузнецов Д.М. Графитация крупногабаритных электродов. Процесс Ачесона / Кузнецов Д.М. – Ростов на Дону: РГАСХМ ГОУ, 2003. – 168 с.

Kuznetsov, D.M. (2003), Grafitatsya krupnogabaritnykh elektrodov. Protsess Achensona [Graphitization of the Large Electrodes. Acheson Process], RGASHM GOU, Rostov na Donu, Russia.

3. Лыков А.В. Тепломассообмен / Лыков А.В. – М.: Энергия, 1998. – 480 с.

Lykov, A.V. (1998), Teplomassoobmen [Heat and Mass Transfer], Energya, Moscow, Russia.

4. Дрешпак Н.С. Результаты анализа режимов индукционного нагрева разъемных деталей машин / Н.С. Дрешпак // Научный вестник НГУ – 2012. – №4. – С.108–113.

Dreshpak, N.S. (2012), “Results of analysis of induction of heating modes of machine parts with detachable connection”, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, no.4, pp. 108–113.

5. Коржик М.В. Дослідження бічного шунта печі графітації / М.В. Коржик, Г.І. Гурчик // Восточно-европейский журнал передовых технологий – 2012. – №3/5 (57). – С. 39–43.

Korzhyk, M.V. and Gurchyk, A.I. (2012), “Investigation of side shunt of graphitation kiln”, Vostochno-Evropeyskiy Zhurnal Peredovykh Tekhnologiy, no.3/5 (57), pp. 39–43.

6. Ярымбаш Д.С. Идентификация электрических параметров печной петли мощных печей графитации / Д.С Ярымбаш // Электротехника и электромеханика. – 2012. – №1. – С. 49–54.

Yarymbash, D.S. (2012),The identification of the circuit furnace electrical parameters of the power graphitization furnaces”, Elektrotekhnika i Elektromekhanika, Kharkov, no.1, pp. 49–54.


Date 2015-10-29 Filesize 1.05 MB Download 614


This Month
All days

Guest Book

If you have questions, comments or suggestions, you can write them in our "Guest Book"

Registration data

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Journal was registered by Ministry of Justice of Ukraine.
Registration number КВ No.17742-6592PR dated April 27, 2011.


D.Yavornytskyi ave.,19, pavilion 3, room 24-а, Dnipro, 49005
Tel.: +38 (056) 746 32 79.
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
You are here: Home Archive by issue 2015 Contents No.3 2015 Power supply technologies The research of electromagnetic and thermoelectric processes in the AC and DC graphitization furnaces