Mathematical model of one-axis inclinometer transducer of zenith and sight angles
- Details
- Category: Information technologies, systems analysis and administration
- Last Updated on 28 October 2015
- Published on 28 October 2015
- Hits: 3297
Authors:
G.N. Kovshov, Dr. Sci. (Tech.), Professor, “Prydniprovska State Academy of Civil Engineering and Architecture”, Head of the Department of Information Measurement Technology and Systems, Dnipropetrovsk, Ukraine.
L.I. Zhyvtsova, “Prydniprovska State Academy of Civil Engineering and Architecture”, Assistant Lecturer of the Department of Automatics and Electrical Technology, Dnipropetrovsk, Ukraine.
I.V. Ryzhkov, Cand. Sci. (Tech.), Associate Professor, “Prydniprovska State Academy of Civil Engineering and Architecture”, Vice-Rector, Senior Lecturer of the Department of Information Measurement Technology and Systems, Dnipropetrovsk, Ukraine.
Abstract:
Purpose. The study has two purposes: development of mathematical model of one-axis inclinometer transducer of zenith and sight angles designed in the form of extended floating tube, balanced by the different and with floatation miss in viscous fluid filling in the transducer case; examination of pointing errors and development of the techniques that reduce them.
Methodology. The research used the methods of comparative analysis and mathematical modeling.
Findings. Mathematical model of one-axis inclinometer transducer of zenith and sight angles on vibrating base has been developed. Sensing inclinometer device has been made as extended cylindrical floating tube balanced by different and on floatation miss in viscous fluid filling in transducer case. Measurement range of zenith and sight angles is 0-360. The formulae permitting to evaluate measurement errors of zenith, sight angles and floating tube movement on the axis has been obtained.
Originality. For the first time we have developed the mathematical model of inclinometer transducer with two degrees of freeness: longitudinal axial movement and rotary movement about symmetry axis. Measurement range of zenith and sight angles is 0-360.
Practical value. The resulted mathematical model may be accepted as a basis for inclinometer transducers with float structure intended to control dimensional orientation of a borehole during drilling process.
References:
1. Bulatov, A.I., Demikhov, V.I. and Makaremko, P.P. (1998), Control protsesov bureniya neftyanyx i gazovyax skvazhin [Control of Drilling Oil and Gas Wells], “Nedra”, Moscow, Russia.
Булатов А.И. Контроль процессов бурения нефтяных и газовых скважин / Булатов А.И., Демихов В.И., Макаренко П.П. – М.: ОАО Издательство „Недра“, 1998. – 345с.
2. Kovshov, G.N., Alimbekov, R.I. and Zhiber, A.V. (1998), Inklinometry (Osnovy teorii i proektirovaniya) [Inclinometers (Basic Theory and Design)], Gilem, Ufa, Russia.
Ковшов Г.Н. Инклинометры (Основы теории и проектирования) / Ковшов Г.Н., Алимбеков Р.И., Жибер А.В. – Уфа: Гилем, 1998. – 380 с.
3. Kovshov, G.N., Ryzhkov, I.V. and Zhivtsova, L.I. (2013), Patent for useful model 78852, Ukraine, MPK7 Е 21 В 47/022. Datchik zenitnogo i vizirnogo kutiv, (Ukraine), Patentee DVNZ “Prydniprovska State Academy of Civil Engineering and Architecture”, No. u 201206932, applied on June 6, 2012, published on April 10, 2013, Bulletin no.7.
Патент на корисну модель 78852 України, МПК7 Е 21 В 47/022. Датчик зенітного і візирного кутів / Ковшов Г.М., Рижков І.В., Живцова Л.І. (Україна); заявник і патентовласник ДВНЗ „Придніпровська державна академія будівництва та архітектури“. – № u 201206932; заявл. 06.06.12; опубл. 10.04.13, Бюл.№7.
4. Markeev, A.P. (1999), Teoreticheskaia mekhanika. [Theoretical Mechanics], CheRo, Moscow, Russia.
Маркеев А.П. Теоретическая механика / Маркеев А.П. – М.: ЧеРо – 1999. – 572с.
5. Borisov, A.V. and Mamaev, I.S. (2001) Dinamika tverdogo tela. [Dynamics of Solid Body], SRC “Regular and chaotic dynamics”, Izhevsk, Russia.
Борисов А.В. Динамика твердого тела / А.В. Борисов, И.С. Мамаев – Ижевск: НИЦ „Регулярная и хаотическая динамика“, 2001. – 384с.
6. Ikrin, V.A. (2004), Soprotivlenie materialov s elementami teorii uprugocti i plastinchnosti. [Strength of Materials with the Elements of Theory of Elasticity and Plasticity], АСВ, Moscow, Russia.
Икрин В.А. Сопротивление материалов с элементами теории упругости и пластичности / Икрин В.А. – М.: Изд. АСВ – 2004. – 424 с.
7. Seregin, V.V. (2007), Prikladnaya teoriya i printsypy postroeniya giroskopicheskikh sistem [Applied Theory and Aufbau Principles of Gyroscopic Systems], StPSU ITMO, St. Petersburg, Russia.
Серегин В.В. Прикладная теория и принципы построения гироскопических систем / Серегин В.В. – СПб.: СпбГУ ИТМО. – 2007. – 78с.
2015_02_kovshov | |
2015-10-10 471.83 KB 1111 |