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INTELLIGENT SENTINEL SATELLITE IMAGE PROCESSING TECHNOLOGY 
FOR LAND COVER MAPPING

Purpose. This article proposes to develop an intelligent Sentinel satellite image processing technology for land cover mapping 
using convolutional neural networks. The result will be an image with improved spatial resolution.

Methodology. The paper presents a technology using a combination of biquadratic interpolation, histogram alignment, PCA 
transform, as well as a parallel residual architecture of convolutional neural networks. The technology increases the information 
content of Sentinel2 optical images by combining 10 and 20meter resolution data, resulting in primary 20meter images with 
improved spatial resolution.

Findings. The root mean square error (RMSE = 3.64) indicates a high accuracy in reproducing the spectral properties of the 
images. The correlation coefficient (CC = 0.997) confirms a high linear relationship between the estimated and observed images. 
The low value of Spectral Angle Mapper (SAM = 0.52) with the high Universal Image Quality Index (UIQI = 0.999) indicates high 
quality and structural similarity between the synthesized and reference images. These results confirm the proposed technology’s 
effectiveness in enhancing the spatial resolution of Sentinel satellite images.

Originality. Traditional pansharpening methods of multispectral images developed for satellite images with panchromatic 
channels cannot be directly applied to Sentinel multispectral data, because these images do not contain a panchromatic channel. 
In addition, atmospheric conditions and the presence of clouds affect the quality of optical images, complicating their further 
thematic processing. The proposed technology, using biquadratic interpolation, histogram alignment, convolutional neural net
works, and PCA transformation, removes clouds and enhances the spatial resolution of the primary 20meter optical satellite im
age channels of Sentinel2. This technology reduces color distortion and increases the detail of digital optical images, which allows 
for more accurate analysis of the state of the earth’s surface.

Practical value. The results obtained can be used to improve the methods for processing Sentinel satellite images, which pro
vide high spatial resolution and accurate preservation of spectral characteristics. It provides the foundation for the development of 
new geographic information systems for land cover monitoring.
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Introduction. Today, many of the world’s most pressing 
problems are directly or indirectly related to agricultural pro
duction [1] and smallholder farming. Ukraine’s agricultural 
sector is a source of exports to the Americas, the European 
Union, and Asia. Intensive development of this sector contrib
utes to economic growth and strengthening of international 
economic relations. Studies show that Ukraine is significantly 
ahead of countries with similar climatic conditions regarding 
exports and profitability. For example, in 2023, Ukraine ex
ported 16.1 million tons of wheat to 65 countries, 26.2 million 
tons of corn to 80 countries, and 5.7 million tons of sunflower 
oil to 130 countries. As the population grows and diets change, 
enhancing agricultural production is crucial to ensuring global 
food security [2, 3]. Thus, political instability affects the sta
bility of the farm sector, calling into question traditional mon
itoring methods due to high financial costs and risks to work
ers. Therefore, it is necessary to conduct reliable and accurate 
agricultural monitoring to maintain the balance of all services 
provided by the ecosystem [4, 5].

Due to modern technologies such as satellite Earth obser
vation and cloud technologies, new opportunities for agricul
tural monitoring are opening up. These tools make it possible 
to provide detailed information about crops at the national 
level in farming systems. For example, the European Space 
Agency (ESA), as part of the Copernicus program, provides 
free and open data from Sentinel1 and Sentinel2 satellites 
and allows for detailed information on the condition of agri
cultural land. The radiometric resolution of these satellites will 

enable one to recognize different types of agricultural crops by 
measuring reflectivity at other wavelengths, including visible, 
nearinfrared, and midinfrared. The temporal resolution is 
necessary for monitoring dynamic processes, such as changes 
in the growing season of agricultural crops, which allows us to 
assess the phases of plant growth and development.

Optical images from Sentinel2 consist of 13 spectral 
channels in the visible, nearinfrared (NIR), and shortwave 
infrared (SWIR) bands. The spatial resolution of these images 
includes 10, 20 and 60 m bands. The 10 m resolution bands 
(Band 2, Band 3, Band 4 and Band 8) are optimal for detailed 
analysis and mapping. In comparison, the 20 m (Band 5, 
Band 6, Band 7, Band 8a, Band 11 and Band 12) and 60 m 
(Band 1, Band 9 and Band 10) contain important spectral in
formation needed to assess the state of agricultural land vege
tation, determine chlorophyll content, water stress, and atmo
spheric correction. Agriculture requires accurate spatial data 
for effective management. The satellite images from Sentinel2 
spacecraft usually do not meet these requirements due to low 
pixel resolution. The 20 and 60 m bands do not provide suffi
cient detail to identify fields, crop boundaries, and other agro
nomic objects. It creates difficulties in mapping, monitoring, 
and managing agricultural land.

A significant portion of remote sensing data is in a digital 
form. The industry is shifting to digital methods for processing 
remote information. It raises the issue of choosing the best 
techniques and algorithms for processing satellite data. Sig
nificant difficulties can arise at the preprocessing stage, as 
there are often no universal approaches to enhance the pri
mary image. In addition, the same land area can be acquired 
from space in different periods using different sensors, spectral 
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bands, and resolutions. For successful data analysis, it is nec
essary to combine and process it, which requires accurate co
ordinate alignment of images at the subpixel level. Most tra
ditional algorithms for preprocessing and thematic process
ing of satellite images, such as iterative register correction 
methods or complex filtering algorithms, involve numerous 
mathematical operations, including multistage transforma
tions and conversions. These algorithms are resourceinten
sive for rapid processing of large amounts of data and also do 
not always provide the required accuracy due to errors in real
world variable image characteristics, such as different lighting 
conditions or atmospheric interference. One of the widely 
used preprocessing methods is pansharpening. This method 
combines images with different spatial resolutions to create a 
new image with increased detail. Pansharpening uses satellite 
imagery (e. g., Worldview and Landsat), which contains a 
highresolution panchromatic channel and lower spatial reso
lution multispectral channels. However, in the case of Senti
nel2 satellites, the lack of a panchromatic channel makes it 
difficult to apply traditional pansharpening methods directly. 
Therefore, to achieve high accuracy in the allocation and anal
ysis of agricultural land based on Sentinel2 data, there is a 
need to develop alternative approaches to increase the spatial 
resolution of the channels from 20 and 60 to10 meters [6].

Literature review. Satellite image processing methods are 
divided into two main categories: preprocessing and thematic 
processing. Preprocessing covers image enhancement, cor
rection, and restoration. Thematic processing focuses on ex
tracting information from the images. Preprocessing methods 
aim to transform images to facilitate visual analysis, enhance 
the informativeness and accuracy of the data, and prepare the 
samples for further automated analysis and map creation. 
Thematic processing methods use automated image analysis 
to classify objects on the images, either with or without a prio
ri information about the characteristics of the classes to be 
identified.

Increasing image information content is the main stage of 
preprocessing. The main approaches to image fusion are 
component substitution (CS), multiple resolution analysis 
(MRA) [7], and pansharpening. In the CS approach, the 
original multispectral image transforms into a new domain by 
replacing one of the components with a band of thin spatial 
resolution, such as a panchromatic (PAN) band. Common ex
amples of CS include principal component analysis [8], inten
sityhuesaturation (IHS) [9], Brovey transform (BT), Gram
Schmidt transform (GS) [10], adaptive GS (GSA), and partial 
replacement adaptive component substitution (PRACS).

A spatial detail is introduced in the MRA approach by re
peatedly decomposing a thin band. It includes highpass filter
ing (HPF), smoothing filtering based on intensity modulation 
(SFIM), wavelet transform [11], additive wavelet transform 
(ATWT) [12], ATWT using model 2 (ATWTM2) and model 3 
(ATWTM3), and generalized Laplace pyramid with modula
tion transfer function matched filter (MTFGLP).

The information content of Sentinel2 images is enhanced 
by synthesizing 10meter bands as a panchromatic channel to 
enhance the spatial resolution of 20meter bands [13]. The ob
tained results are used for land cover classification [14]. However, 
to take into account the peculiarities of Sentinel2 images, four 
highresolution bands used to enhance the resolution of 20 and 
60 m bands do not contain spatial information that is character
istic of the panchromatic channel; the spectral range of high
resolution bands should not overlap with the ranges of lowreso
lution bands. Therefore, using pansharpening methods is re
stricted to enhancing the informativeness of Sentinel2 images.

Geostatistical approaches, such as kriging interpolation, 
increase the information content through image fusion. For 
example, the kernelized external drift (KED), downscaling 
kernelization (DSCK), and areatotal regression kernelization 
(ATPRK) methods have a significant advantage in that they 
preserve the spectral properties of the observed raw images, 

i. e., they are coherent. However, ATPRK is computationally 
more efficient and userfriendly than KED and DSCK.

Traditional methods for preliminary and thematic process
ing of satellite images analyze spatial, spectral, textural, mor
phological, and other characteristics. However, shallow learning 
analytical approaches, which use images with high spatial reso
lution but low spectral and temporal resolution, often fail to ef
fectively distinguish land use classes due to similarity in spectral 
signatures. Instead, deep learning, which is multilevel and uses 
the data for training, performs significantly better than shallow 
methods and has already been proven to outperform manual re
sults. In a study [15], the authors trained a highresolution deep 
residual neural network on Sentinel2 images using a large train
ing data set. Convolutional Neural Networks (CNNs), as a form 
of deep learning, can use contextual and spectral information to 
analyze images [16]. The study [17] developed an extended con
volutional neural network structure for fusing Sentinel2 and 
Landsat 8 images. Although deep learning methods effectively 
increase the information content of satellite images, their use 
has certain limitations. For example, publicly available satellite 
images often have a large coverage area and low spatial resolu
tion, which does not meet the requirements of convolutional 
neural networks. Article [18] notes that improving land cover 
mapping requires integrating computer vision technologies with 
traditional methods of Earth image analysis.

Purpose. This study aims to develop an intelligent Sentinel 
satellite image processing technology for agricultural land 
mapping using convolutional neural networks. The result will 
be an image of the primary 20meter channels with improved 
spatial resolution to using 10meter Sentinel2 channels. This 
approach is expected to improve the accuracy and detail of the 
obtained images, which is crucial for the successful use of Sen
tinel data in agricultural monitoring.

In this paper, to achieve the set aim, the following tasks 
were formed and solved:

 to develop a methodology using convolutional neural 
networks for cloud masking and removal based on the inte
grated use of Sentinel1 and Sentinel2 images, and a parallel 
residual architecture for combining and enhancing image in
formation;

 to optimize the image processing algorithms within this 
methodology to ensure accurate detection and increase the in
formation content of Sentinel images;

 to conduct a comprehensive evaluation and comparison 
of the proposed methodology with traditional methods, evalu
ating factors such as accuracy, efficiency, and computational 
performance;

 to test the effectiveness and applicability of the developed 
methodology by applying it to real datasets, with an emphasis 
on increasing the information content of Sentinel images for 
agricultural monitoring.

Methods. The paper proposes to use a parallel residual ar
chitecture based on convolutional neural networks to combine 
and increase the information content of Sentinel2 images. 
Fig. 1 shows the block diagram of the information technology.

The first step is to load Sentinel1 and Sentinel2 space
craft images from the ESA website.

The second step is the preprocessing of satellite images. 
The Sentinel1 geospatial data are corrected according to the 
algorithm presented in [19]. For optical images from the Senti
nel2 satellite, the following steps are included: geometric cor
rection, radiometric calibration, and brightness conversion. 
Geometric correction improves the quality of the primary im
age by eliminating various artifacts that arise from camera an
gles, positional inaccuracies, and the influence of terrain and 
atmospheric conditions. It is proposed to use the biquadratic 
interpolation method for geometric image correction (resam
pling). This method considers the number of pixels included in 
the updated values. This method uses the OpenCV image pro
cessing library of the Python programming language. After 
processing the image using the biquadratic interpolation 
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method, a new value is calculated around each pixel based on 
the values of the neighboring pixels. It helps to correct geomet
ric distortions and convert data into geographic coordinates.

Radiometric calibration is the process of minimizing the 
difference in brightness values between images that can occur 
due to sensor defects or atmospheric noise. The histogram 
equalization method is used for the radiometric correction of 
satellite images [20]
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where G(z) is the new intensity value for pixels from the source 
image; z is the pixel intensity value; L is the maximum inten
sity value (usually 256 for an 8bit image); M and N are the 
image sizes; nj is the number of pixels from the source image 
with intensity j.

At the third step of the correction procedure, we obtain 
radiometrically and geometrically corrected satellite images in 
a cartographic coordinate system.

The fourth step is to perform the masking procedure and 
remove clouds and artifacts that may affect the accuracy of the 
analysis [21]. The cloud masking procedure uses the convolu
tional neural network (CNN) architecture consisting of layers 
with threedimensional organization: width, height, and 
depth. It allows for efficient processing of multichannel data. 
In the layers, limited regions of the input image connect to the 
neurons before proceeding through the convolution process. It 
significantly reduces the number of parameters and weights 
the model needs to train. One of the unique features of ANNs 
is their capacity to identify the optimal filters during training. 
It makes it possible to extract features at different levels of im
age complexity. Each convolutional layer extracts progres
sively complex features, functioning as filters to separate 
clouds and shadows. The convolutional architecture performs 

operations in both spectral and spatial aspects. Convolutional 
layers preserve the spatial relationship between pixels, enabling 
the analysis of image features. Pooling layers (subsampling) 
then reduce the dimensionality of each feature map while re
taining the most relevant information about the image. The 
convolution process is mathematically defined as follows [22]

Gi = f (Gi - 1 ⊗ Wi + bi),

where Wi is the vector of weighting coefficients of the ith con
volution filter; symbol ⊗ represents the convolution operation 
between the ith image layer and the i-1th layer; bi is the shift 
vector; the feature map Giof the ith layer is obtained using a 
linear activation function f (•).

The pooling operations apply various data aggregation 
methods, such as maximum, average, or sum. The quantity of 
convolution and merge operations, as illustrated in Fig. 1, is 
dictated by the number of filters utilized in each layer. At this 
step, the multichannel images (in RGB format) of the patches, 
transformed from the Sentinel2 dataset using PCA, are used in 
the data. The architecture has four hidden layers (with kernel 
sizes of 3 × 3, 3 × 3, 5 × 5 and 5 × 5) and a final layer with two 
outputs corresponding to the “cloudless” and “cloudy” classes.

The proposed technology leverages content, texture, and 
spectral information across each dimension. It constructs a low
rank adaptive weighted tensor regularization model for restoring 
cloudy areas. This model includes an object recovery network 
that recovers missing objects in the image, a spectral feature re
covery network that recovers spectral information about these 
objects, and a texture recovery network that helps improve the 
quality of the recovery. Each layer of the convolutional network 
is activated using corrected linear units (ReLUs) [22]

ReLU(x) = max(0, x)
A loss function recovers cloudy areas by comparing images 

containing clouds (Sentinel2) with cloudfree images (Senti

Fig. 1. Proposed information technology framework
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nel1). The root mean square error serves as the loss function 
and is calculated by comparing the original and predicted pix
el intensity values of images. Specifically, the root mean square 
error is defined as the average of the squared differences be
tween the pixel intensities at corresponding positions in the 
two images [23]
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where N denotes the amount of additional data; X1 is a time 
snapshot with areas covered by the cloud; Yi is additional data, 
such as spectral or temporal data.

The output feature map GNN_output was calculated based 
on the input feature maps GCNN_1 and GCNN_2, which were ob
tained from CNN. The V function applies to the output ob
tained from the previous convolutional operation

GNN_output = GCNN_1 + V(C(GCNN_1, GCNN_2)),

where GNN_output is the result of a CNN containing content
texturespectral characteristic data; GCNN_1 is a feature map 
created by a texture CNN; GCNN_2 is a feature map created by a 
spectral CNN; C(GCNN_1, GCNN_2) is all input feature maps ob
tained by concatenating GCNN_1 and GCNN_2; V(GCNN_1, GCNN_2) 
is a feature map obtained by convolutional operation with a 
kernel that uses C(GCNN_1, GCNN_2) as input.

A parallel residual architecture utilizing convolutional 
neural networks is proposed to combine and enhance the in
formation content of Sentinel2 images. The Sentinel2 image 
data is divided into two sets with 10meter and 20meter reso
lution. Band 10 is excluded from the spatial enhancement due 
to its low radiometric quality and crossband artifacts [22]. 
Given these sets, the proposed spatial enhancement of the data 
is to use the 10meter resolution version of the VHRP in the 
20meter bands. It is important to note that channels B5, B6 
and B7 contain important information for estimating soil 
moisture and forecasting weather conditions to optimize agri
cultural processes. Band B8a measures the photosynthetic ac
tivity of plants, which is a critical indicator for evaluating plant 
health and growth. Bands B11 and B12 are used to measure 

temperature changes on the land surface. It allows the detec
tion of thermal anomalies and develops strategies for manag
ing thermal resources. Thus, the information contained in the 
20meter channels is necessary for the landbased agricultural 
sector, as it allows for accurate monitoring and evaluation of 
various aspects of crop production and land management.

The next step is to apply the feature extraction block, 
which has two branches: the first branch contains the pooling 
(subsampling) and residual layer blocks, and the second 
branch contains the detailed loss components. Additional 
20meter Sentinel2 image channels load through the feature 
extraction block in parallel. The data from both branches are 
combined, and the result is subjected to lowpass filtering to 
reduce noise and remove highfrequency components. Next, 
add the detailed loss components, previously calculated, to the 
resulting data. Subsequently discretize the result to achieve the 
final enhancement of image information. A spatial feature fu
sion component combines information from various resolu
tion ranges. After the parallel residual learning component, 
the obtained feature maps combine and transfer to the next 
level. Utilize two fully connected layers, each followed by 
ReLU activation. Next, the convolution layer transforms the 
feature maps into a spatial residual image, matching the chan
nel count of the highresolution images [24]
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where z is the output data obtained after the previous convolu
tion operation; zf1 is the output data of the first fully connected 
layer (FC ); zf2 is the output data of the second layer; z2 is the 
final output; wf1, wf2, wf3 is FC layer weights; bf, bf2, bf3 is FC 
layer displacements.

Thus, in formula (1), the variable z denotes the output af
ter the preliminary convolution operation applied to the input 
image. After this operation, the resulting feature maps are sent 
to the first fully connected layer, denoted as zf1. Then, using 
the weights wf1 and bias bf1, this data is processed by applying 
the activation function ReLU.

Fig. 2. The Sentinel-2 data set used in the experiments:
a – 10-meter data (channels 4-3-2 in RGB); b – 20-meter data (channels 12-8A-5 in RGB); c – result after PCA transformation; d – under the 
10-meter data area; e – under the 20-meter data area; f – under the PCA transformation area

a b c

d e f
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Fig. 3. Results of Sentinel-2 image information enhancement:
a – original image; b – proposed technology; c – ATWT; d – AWLP; e – Brovey; f – GS; g – HCS; h – HPF; i – HPFC; j – LMM; k – LMVM; 
l – HIS

a b c

d e f

g h i

j k l

Results. This work proposes to use experimental data from 
the Sentinel2 Level1C spacecraft. The training data covers 
the scene of the village of Velyka Bilozerka in Zaporizhzhia 
region of Ukraine in the spring of 2023.

During this period, farmers are preparing fields for the 
sowing campaign. The study showed that in the period 
from spring to summer, cloud cover in Velyka Bilozerka vil
lage increases compared to other seasons. It is due to the 
characteristic meteorological conditions during this peri
od, such as more intense cyclones and the spread of mois
ture from the Atlantic Ocean due to the influence of spring 
irrigation. Such increased cloud cover can affect the effi
ciency of data collection from artificial satellites, in par
ticular, reduce image quality and complicate the process of 

analyzing land data. Fig. 2 shows 10meter and 20meter 
data channels.

During the experiments, the parameters of the proposed 
technology in this paper were as follows: first, train the parallel 
residual architecture of convolutional neural networks 
(ResNet)3x on 60 × 60 pixel patches of data reduced by a factor 
of 2. Similarly, to train a parallel residual network based on 
ResNet5x, the data was reduced by a factor of 5 and combined 
into 20 × 20 pixel patches. Train each network with 3,600 pairs 
of samples and allocate 10 % of these samples for data valida
tion. Each branch contains 5 ResBlocks, and the 3 × 3 convo
lutional layers use 128 filters, except for the final convolutional 
layer. The Keras framework implemented the networks used. 
Fig. 3 presents the results from both the experimental settings 
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and traditional processing methods, enabling a comparison of 
their impact on the information content of the images.

To compare the effectiveness of the proposed method with 
existing methods (ATWT, AWLP, HPF, GS, HCS, LMM, 
Brovey, IHS, HPFC, and LMVM), evaluators used quality 
metrics for each method based on Sentinel2 images. They as
sessed the methods using RMSE (Root Mean Square Error), 
CC (Correlation Coefficient), ERGAS (Relative Global Er
ror), SAM (Spectral Angle Mapper), UIQI (Universal Image 
Quality Index), and SRE (Spectral Reconstruction Error). 
Table presents the results. To analyze the quantitative perfor
mance of traditional image processing methods from Table, 
we can conclude that the proposed technology demonstrates 
better results: the low RMSE value (3.64) indicates high ac
curacy of spectral properties reproduction, and the high CC 
correlation coefficient (0.997) confirms a solid linear relation
ship between the estimated and observed images. In addition, 
the low SAM value (0.52) and high UIQI (0.999) indicate high 
quality and structural similarity between the calculated and 
observed images. These results demonstrate the effectiveness 
of the proposed method in reproducing the spectral properties 
of Sentinel2 images.

The HPFC method is not effective among the investigated 
methods. This method has the highest values of each metric 
compared to the other methods, indicating its low efficiency in 
reproducing the spectral characteristics of Sentinal2 images.

To test the effectiveness of the technology on real Senti
nel2 data, we directly loaded the original lowresolution da
tasets and the highresolution data into the trained networks. 
This means that the (20, 10 m) resolution datasets obtain the 
highresolution 10 m images. Since there are no ground data 
available, spectral bands with higher resolution were consid
ered as reference data to evaluate the effectiveness of the reso
lution enhancement method. As part of the experiments, four 
spectral bands with a resolution of 10 m were used as reference 
data for visual evaluation of the results. The results of the im
age processing methods shown in Fig. 3 confirm that the pro
posed technology significantly improves the sharpness of edg
es and the saturation of details of ground objects.

The image reconstructed using the ATWT method demon
strates the preservation of spectral and spatial characteristics, 
but some artifacts in the form of noise and blurring are ob
served. The result of applying the AWLP method is character
ized by highquality preservation of details and colors. The im
age has clear contours and low noise. The image obtained using 
the Brovey method reproduces the spectral characteristics with 
high accuracy, but there are artifacts in the form of blurring and 

color saturation. The GS method resulted in an image with a 
certain level of blurring and loss of detail, especially in areas 
with thin contours. The image produced by HCS reproduces 
details with the specified accuracy, but there are artifacts in the 
form of noise and low resolution. The image created by the 
HPF method is characterized by high resolution and sharp de
tails, but noise is present. The HPFC method resulted in a sig
nificant loss of detail and a high level of blurring in the image. 
The image reconstructed using the IHS method has some arti
facts in the form of color saturation and loss of detail in dark 
areas. The LMM method provides highquality reproduction 
of image details and colors without noticeable noise. The im
age obtained by the LMVM method has clear details and colors 
without noticeable noise or artifacts. The image obtained using 
the proposed method reproduces spectral and spatial charac
teristics with high accuracy and minimal artifacts.

Fig. 4 shows a graph of the execution time of image pro
cessing methods. The fastest method is Brovey, which runs in 
just 0.016 seconds due to its simple computational procedure. 
On the other hand, the slowest method is LMVM, and the 
proposed technology is due to a more complex computational 
procedure and a large amount of data to be processed.

This study implemented the proposed technology on a 
personal computer with an Intel(R) Core(TM) i57400 CPU 
running at 3.00 GHz, an Nvidia GTX 950M graphics proces
sor, and 16 GB of RAM. This configuration made it possible to 
train the convolutional neural network. After completing the 
training process of the artificial intelligence model, the team 
designed the general architecture of the developed software 
application. Fig. 5 displays the sequence and steps of applying 
the image processing technology.

Python programming language implements the software 
for the proposed information technology. The development 
involved libraries such as TensorFlow, NumPy, Matplotlib, 
Rasterio, GeoPandas, and Earthpy. These libraries facilitated 
data handling, result visualization, and the implementation of 
image processing techniques.

Conclusions. The paper proposes an intelligent technology 
for processing Sentinel satellite images for mapping agricul
tural lands using convolutional neural networks. The devel
oped technology integrates Sentinel radar and optical images 
using biquadratic interpolation, histogram alignment, convo
lutional neural networks, and PCA transformations for cloud 
masking and removal. It is proposed to use the parallel residual 
CNN architecture, which allows combining data with different 
resolutions (10 and 20 meters) and increasing the information 
content of Sentinel2 optical images. The proposed technology 
reduces color distortion and increases the detail of digital opti
cal images, which makes it possible to more accurately identify 

Table
Quantitative assessments

Method
Metrics

RMSE CC ERGAS SAM UIQI SRE

ATWT 11.29 0.97 16.47 5.27 0.98 0.01

AWLP 10.25 0.97 16.01 4.81 0.98 0.01

HPF 13.94 0.95 19.46 6.48 0.99 0.02

GS 10.92 0.96 63.77 5.18 0.95 0.01

HCS 13.20 0.96 13.24 5.98 0.99 0.02

LMM 8.38 0.97 19.95 3.96 0.98 0.04

Brovey 10.34 0.96 69.33 4.89 0.95 0.01

IHS 12.29 0.95 71.30 5.82 0.99 0.01

HPFC 17.04 0.95 22.27 6.19 0.98 0.01

LMVM 13.59 0.95 20.62 6.37 0.99 0.01

Proposed 
technology

3.64 0.99 5.91 0.52 1 0

Fig. 4. Execution Time of Various Image Processing Methods
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the boundaries of agricultural fields and analyze the condition 
of the land in detail. Experimental results confirm the effec
tiveness of the proposed approach: Root mean square error 
(RMSE = 3.64), high correlation coefficient (CC = 0.997), 
lowest extended normalized difference vegetation index (ER
GAS = 5.91), low spectral angle of reflection (SAM = 0.52), 
high universal image quality index (UIQI = 0.999) and mini
mum value of spectral residual error (SRE = 0) indicate the suc
cess of the developed methods. The results obtained can be 
used to improve the methods for processing Sentinel satellite 
images, which provide high spatial resolution and accurate 
preservation of spectral characteristics. This development pro
vides a foundation for improved geographic information tech
nologies, which can be applied to land cover monitoring.

This research is carried out as part of the scientific project 
“Development of software and hardware of intelligent technolo-
gies for sustainable cultivation of agricultural crops in war and 
post-war times” funded by the Ministry of Education and Science 
of Ukraine at the expense of the state budget (State Registration 
No. 0124U000289).
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Мета. Розробка інтелектуальної технології обробки 
супутникових зображень Sentinel за допомогою згорт
кових нейронних мереж. У результаті синтезується зо
браження із покращеною просторовою роздільною 
здатністю.

Методика. Представлена інтелектуальна технологія, 
що використовує комбінацію методів біквадратичної ін
терполяції, гістограмного вирівнювання та PCA
перетворення, а також паралельну залишкову архітекту
ру згорткових нейронних мереж. Використання техноло
гії підвищує інформативність оптичних зображень 
Sentinel2 завдяки об’єднанню даних із роздільними 
здатностями 10 і 20 метрів. У результаті отримаємо пер
винні 20метрові зображення з покращеною просторо
вою роздільною здатністю.

Результати. Середньоквадратична похибка (RMSE = 
= 3,64) свідчить про високу точність відтворення спек
тральних властивостей зображень. Коефіцієнт кореляції 
(CC = 0,997) підтверджує дуже сильну лінійну залежність 
між оціненими та спостережуваними зображеннями. 
Низьке значення спектрального кута відображення 
(SAM = 0,52) разом із високим універсальним індексом 

якості зображення (UIQI = 0,999) свідчать про високу 
якість і структурну подібність між синтезованими та ета
лонними зображеннями. Результати тестування підтвер
джують ефективність запропонованої технології у покра
щенні просторової роздільної здатності супутникових 
зображень Sentinel.

Наукова новизна. Класичні методи підвищення ін
формативності багатоспектральних зображень розробле
ні для супутникових знімків із панхроматичними канала
ми, не можуть бути безпосередньо застосовані до знімків 
супутника Sentinel, оскільки ці зображення не містять 
панхроматичний канал. Крім того, атмосферні умови, зо
крема наявність хмар, впливають на якість оптичних 
знімків, ускладнюючи їх подальшу тематичну обробку. 
Запропонована технологія на основі методів біквадратич
ної інтерполяції, гістограмного вирівнювання, згортко
вих нейронних мереж і PCAперетворення дозволяє ви
даляти хмари на знімках і покращувати просторову здат
ність первинних 20метрових каналів оптичних супутни
кових зображень Sentinel2. Ця технологія дозволяє змен
шити кольорові спотворення й підвищити деталізацію 
цифрових оптичних зображень, що дає змогу в подаль
шому більш точно аналізувати стан земного покриву.

Практична значимість. Отримані результати можуть 
бути використані для вдосконалення методів обробки су
путникових зображень Sentinel, що забезпечують отри
мання геопросторових даних покращеної просторової 
здатності зі збереженням спектральних характеристик. 
Це створює основу для розробки нових геоінформацій
них систем для моніторингу земної поверхні.

Ключові слова: згорткова нейронна мережа, зображен-
ня, дистанційне зондування, просторова здатність
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