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INTELLIGENT SENTINEL SATELLITE IMAGE PROCESSING TECHNOLOGY
FOR LAND COVER MAPPING

Purpose. This article proposes to develop an intelligent Sentinel satellite image processing technology for land cover mapping
using convolutional neural networks. The result will be an image with improved spatial resolution.

Methodology. The paper presents a technology using a combination of biquadratic interpolation, histogram alignment, PCA
transform, as well as a parallel residual architecture of convolutional neural networks. The technology increases the information
content of Sentinel-2 optical images by combining 10 and 20-meter resolution data, resulting in primary 20-meter images with
improved spatial resolution.

Findings. The root mean square error (RMSE = 3.64) indicates a high accuracy in reproducing the spectral properties of the
images. The correlation coefficient (CC = 0.997) confirms a high linear relationship between the estimated and observed images.
The low value of Spectral Angle Mapper (SAM =(.52) with the high Universal Image Quality Index (UIQI = 0.999) indicates high
quality and structural similarity between the synthesized and reference images. These results confirm the proposed technology’s
effectiveness in enhancing the spatial resolution of Sentinel satellite images.

Originality. Traditional pansharpening methods of multispectral images developed for satellite images with panchromatic
channels cannot be directly applied to Sentinel multispectral data, because these images do not contain a panchromatic channel.
In addition, atmospheric conditions and the presence of clouds affect the quality of optical images, complicating their further
thematic processing. The proposed technology, using biquadratic interpolation, histogram alignment, convolutional neural net-
works, and PCA transformation, removes clouds and enhances the spatial resolution of the primary 20-meter optical satellite im-
age channels of Sentinel-2. This technology reduces color distortion and increases the detail of digital optical images, which allows
for more accurate analysis of the state of the earth’s surface.

Practical value. The results obtained can be used to improve the methods for processing Sentinel satellite images, which pro-
vide high spatial resolution and accurate preservation of spectral characteristics. It provides the foundation for the development of
new geographic information systems for land cover monitoring.

Keywords: convolutional neural network, image, remote sensing, spatial resolution

Introduction. Today, many of the world’s most pressing
problems are directly or indirectly related to agricultural pro-
duction [1] and smallholder farming. Ukraine’s agricultural
sector is a source of exports to the Americas, the European
Union, and Asia. Intensive development of this sector contrib-
utes to economic growth and strengthening of international
economic relations. Studies show that Ukraine is significantly
ahead of countries with similar climatic conditions regarding
exports and profitability. For example, in 2023, Ukraine ex-
ported 16.1 million tons of wheat to 65 countries, 26.2 million
tons of corn to 80 countries, and 5.7 million tons of sunflower
oil to 130 countries. As the population grows and diets change,
enhancing agricultural production is crucial to ensuring global
food security [2, 3]. Thus, political instability affects the sta-
bility of the farm sector, calling into question traditional mon-
itoring methods due to high financial costs and risks to work-
ers. Therefore, it is necessary to conduct reliable and accurate
agricultural monitoring to maintain the balance of all services
provided by the ecosystem [4, 5].

Due to modern technologies such as satellite Earth obser-
vation and cloud technologies, new opportunities for agricul-
tural monitoring are opening up. These tools make it possible
to provide detailed information about crops at the national
level in farming systems. For example, the European Space
Agency (ESA), as part of the Copernicus program, provides
free and open data from Sentinel-1 and Sentinel-2 satellites
and allows for detailed information on the condition of agri-
cultural land. The radiometric resolution of these satellites will
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enable one to recognize different types of agricultural crops by
measuring reflectivity at other wavelengths, including visible,
near-infrared, and mid-infrared. The temporal resolution is
necessary for monitoring dynamic processes, such as changes
in the growing season of agricultural crops, which allows us to
assess the phases of plant growth and development.

Optical images from Sentinel-2 consist of 13 spectral
channels in the visible, near-infrared (NIR), and short-wave
infrared (SWIR) bands. The spatial resolution of these images
includes 10, 20 and 60 m bands. The 10 m resolution bands
(Band 2, Band 3, Band 4 and Band 8) are optimal for detailed
analysis and mapping. In comparison, the 20 m (Band 5,
Band 6, Band 7, Band 8a, Band 11 and Band 12) and 60 m
(Band 1, Band 9 and Band 10) contain important spectral in-
formation needed to assess the state of agricultural land vege-
tation, determine chlorophyll content, water stress, and atmo-
spheric correction. Agriculture requires accurate spatial data
for effective management. The satellite images from Sentinel-2
spacecraft usually do not meet these requirements due to low
pixel resolution. The 20 and 60 m bands do not provide suffi-
cient detail to identify fields, crop boundaries, and other agro-
nomic objects. It creates difficulties in mapping, monitoring,
and managing agricultural land.

A significant portion of remote sensing data is in a digital
form. The industry is shifting to digital methods for processing
remote information. It raises the issue of choosing the best
techniques and algorithms for processing satellite data. Sig-
nificant difficulties can arise at the pre-processing stage, as
there are often no universal approaches to enhance the pri-
mary image. In addition, the same land area can be acquired
from space in different periods using different sensors, spectral
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bands, and resolutions. For successful data analysis, it is nec-
essary to combine and process it, which requires accurate co-
ordinate alignment of images at the sub-pixel level. Most tra-
ditional algorithms for pre-processing and thematic process-
ing of satellite images, such as iterative register correction
methods or complex filtering algorithms, involve numerous
mathematical operations, including multi-stage transforma-
tions and conversions. These algorithms are resource-inten-
sive for rapid processing of large amounts of data and also do
not always provide the required accuracy due to errors in real-
world variable image characteristics, such as different lighting
conditions or atmospheric interference. One of the widely
used pre-processing methods is pan-sharpening. This method
combines images with different spatial resolutions to create a
new image with increased detail. Pansharpening uses satellite
imagery (e.g., Worldview and Landsat), which contains a
high-resolution panchromatic channel and lower spatial reso-
lution multispectral channels. However, in the case of Senti-
nel-2 satellites, the lack of a panchromatic channel makes it
difficult to apply traditional pansharpening methods directly.
Therefore, to achieve high accuracy in the allocation and anal-
ysis of agricultural land based on Sentinel-2 data, there is a
need to develop alternative approaches to increase the spatial
resolution of the channels from 20 and 60 to10 meters [6].

Literature review. Satellite image processing methods are
divided into two main categories: pre-processing and thematic
processing. Pre-processing covers image enhancement, cor-
rection, and restoration. Thematic processing focuses on ex-
tracting information from the images. Pre-processing methods
aim to transform images to facilitate visual analysis, enhance
the informativeness and accuracy of the data, and prepare the
samples for further automated analysis and map creation.
Thematic processing methods use automated image analysis
to classify objects on the images, either with or without a prio-
ri information about the characteristics of the classes to be
identified.

Increasing image information content is the main stage of
pre-processing. The main approaches to image fusion are
component substitution (CS), multiple resolution analysis
(MRA) [7], and pan-sharpening. In the CS approach, the
original multispectral image transforms into a new domain by
replacing one of the components with a band of thin spatial
resolution, such as a panchromatic (PAN) band. Common ex-
amples of CS include principal component analysis [8], inten-
sity-hue-saturation (IHS) [9], Brovey transform (BT), Gram-
Schmidt transform (GS) [10], adaptive GS (GSA), and partial
replacement adaptive component substitution (PRACS).

A spatial detail is introduced in the MRA approach by re-
peatedly decomposing a thin band. It includes high-pass filter-
ing (HPF), smoothing filtering based on intensity modulation
(SFIM), wavelet transform [11], additive wavelet transform
(ATWT) [12], ATWT using model 2 (ATWTM?2) and model 3
(ATWT-M3), and generalized Laplace pyramid with modula-
tion transfer function matched filter (MTF-GLP).

The information content of Sentinel-2 images is enhanced
by synthesizing 10-meter bands as a panchromatic channel to
enhance the spatial resolution of 20-meter bands [13]. The ob-
tained results are used for land cover classification [14]. However,
to take into account the peculiarities of Sentinel-2 images, four
high-resolution bands used to enhance the resolution of 20 and
60 m bands do not contain spatial information that is character-
istic of the panchromatic channel; the spectral range of high-
resolution bands should not overlap with the ranges of low-reso-
Iution bands. Therefore, using pansharpening methods is re-
stricted to enhancing the informativeness of Sentinel-2 images.

Geostatistical approaches, such as kriging interpolation,
increase the information content through image fusion. For
example, the kernelized external drift (KED), downscaling
kernelization (DSCK), and area-total regression kernelization
(ATPRK) methods have a significant advantage in that they
preserve the spectral properties of the observed raw images,

i.e., they are coherent. However, ATPRK is computationally
more efficient and user-friendly than KED and DSCK.

Traditional methods for preliminary and thematic process-
ing of satellite images analyze spatial, spectral, textural, mor-
phological, and other characteristics. However, shallow learning
analytical approaches, which use images with high spatial reso-
lution but low spectral and temporal resolution, often fail to ef-
fectively distinguish land use classes due to similarity in spectral
signatures. Instead, deep learning, which is multi-level and uses
the data for training, performs significantly better than shallow
methods and has already been proven to outperform manual re-
sults. In a study [15], the authors trained a high-resolution deep
residual neural network on Sentinel-2 images using a large train-
ing data set. Convolutional Neural Networks (CNNs), as a form
of deep learning, can use contextual and spectral information to
analyze images [16]. The study [17] developed an extended con-
volutional neural network structure for fusing Sentinel-2 and
Landsat 8 images. Although deep learning methods effectively
increase the information content of satellite images, their use
has certain limitations. For example, publicly available satellite
images often have a large coverage area and low spatial resolu-
tion, which does not meet the requirements of convolutional
neural networks. Article [18] notes that improving land cover
mapping requires integrating computer vision technologies with
traditional methods of Earth image analysis.

Purpose. This study aims to develop an intelligent Sentinel
satellite image processing technology for agricultural land
mapping using convolutional neural networks. The result will
be an image of the primary 20-meter channels with improved
spatial resolution to using 10-meter Sentinel-2 channels. This
approach is expected to improve the accuracy and detail of the
obtained images, which is crucial for the successful use of Sen-
tinel data in agricultural monitoring.

In this paper, to achieve the set aim, the following tasks
were formed and solved:

- to develop a methodology using convolutional neural
networks for cloud masking and removal based on the inte-
grated use of Sentinel-1 and Sentinel-2 images, and a parallel
residual architecture for combining and enhancing image in-
formation;

- to optimize the image processing algorithms within this
methodology to ensure accurate detection and increase the in-
formation content of Sentinel images;

- to conduct a comprehensive evaluation and comparison
of the proposed methodology with traditional methods, evalu-
ating factors such as accuracy, efficiency, and computational
performance;

- to test the effectiveness and applicability of the developed
methodology by applying it to real datasets, with an emphasis
on increasing the information content of Sentinel images for
agricultural monitoring.

Methods. The paper proposes to use a parallel residual ar-
chitecture based on convolutional neural networks to combine
and increase the information content of Sentinel-2 images.
Fig. 1 shows the block diagram of the information technology.

The first step is to load Sentinel-1 and Sentinel-2 space-
craft images from the ESA website.

The second step is the pre-processing of satellite images.
The Sentinel-1 geospatial data are corrected according to the
algorithm presented in [19]. For optical images from the Senti-
nel-2 satellite, the following steps are included: geometric cor-
rection, radiometric calibration, and brightness conversion.
Geometric correction improves the quality of the primary im-
age by eliminating various artifacts that arise from camera an-
gles, positional inaccuracies, and the influence of terrain and
atmospheric conditions. It is proposed to use the bi-quadratic
interpolation method for geometric image correction (resam-
pling). This method considers the number of pixels included in
the updated values. This method uses the OpenCV image pro-
cessing library of the Python programming language. After
processing the image using the bi-quadratic interpolation
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method, a new value is calculated around each pixel based on
the values of the neighboring pixels. It helps to correct geomet-
ric distortions and convert data into geographic coordinates.

Radiometric calibration is the process of minimizing the
difference in brightness values between images that can occur
due to sensor defects or atmospheric noise. The histogram
equalization method is used for the radiometric correction of
satellite images [20]

L-13
G )=—7— n;,
©=3w 2
where G(z) is the new intensity value for pixels from the source
image; z is the pixel intensity value; L is the maximum inten-
sity value (usually 256 for an 8-bit image); M and N are the
image sizes; n; is the number of pixels from the source image
with intensity j.

At the third step of the correction procedure, we obtain
radiometrically and geometrically corrected satellite images in
a cartographic coordinate system.

The fourth step is to perform the masking procedure and
remove clouds and artifacts that may affect the accuracy of the
analysis [21]. The cloud masking procedure uses the convolu-
tional neural network (CNN) architecture consisting of layers
with three-dimensional organization: width, height, and
depth. It allows for efficient processing of multi-channel data.
In the layers, limited regions of the input image connect to the
neurons before proceeding through the convolution process. It
significantly reduces the number of parameters and weights
the model needs to train. One of the unique features of ANNs
is their capacity to identify the optimal filters during training.
It makes it possible to extract features at different levels of im-
age complexity. Each convolutional layer extracts progres-
sively complex features, functioning as filters to separate
clouds and shadows. The convolutional architecture performs

[step1  Download the image
Sentinel-1 Sentinel-2_

operations in both spectral and spatial aspects. Convolutional
layers preserve the spatial relationship between pixels, enabling
the analysis of image features. Pooling layers (sub-sampling)
then reduce the dimensionality of each feature map while re-
taining the most relevant information about the image. The
convolution process is mathematically defined as follows [22]

Gi=/(G;_, ® W;+b),

where Wi is the vector of weighting coefficients of the i con-
volution filter; symbol ® represents the convolution operation
between the i image layer and the i- 1" layer; b; is the shift
vector; the feature map Gof the i layer is obtained using a
linear activation function f(e).

The pooling operations apply various data aggregation
methods, such as maximum, average, or sum. The quantity of
convolution and merge operations, as illustrated in Fig. 1, is
dictated by the number of filters utilized in each layer. At this
step, the multi-channel images (in RGB format) of the patches,
transformed from the Sentinel-2 dataset using PCA, are used in
the data. The architecture has four hidden layers (with kernel
sizes of 3 x 3, 3 x 3,5 x 5and 5 x 5) and a final layer with two
outputs corresponding to the “cloudless” and “cloudy” classes.

The proposed technology leverages content, texture, and
spectral information across each dimension. It constructs a low-
rank adaptive weighted tensor regularization model for restoring
cloudy areas. This model includes an object recovery network
that recovers missing objects in the image, a spectral feature re-
covery network that recovers spectral information about these
objects, and a texture recovery network that helps improve the
quality of the recovery. Each layer of the convolutional network
is activated using corrected linear units (ReLUs) [22]

ReLU(x) = max(0, x)

A loss function recovers cloudy areas by comparing images
containing clouds (Sentinel-2) with cloud-free images (Senti-

Step3 |

il

o TS5 | HGXWIB HIBXWI3  HI5XWIS

%,

- detection mask
H/32xW/32 HxW

CNN training

By texture
characteristics
S

Cloud By spectral
characteristics

Result

A legend: D— Convulation layer, 3x3; D- Subsampling, 3x3; - - Convulation layer, 5x5; D Subsampling, 5x5;
0 - Fully connected layer; []- Pool block; [_]- Residual layer.

Fig. 1. Proposed information technology framework
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nel-1). The root mean square error serves as the loss function
and is calculated by comparing the original and predicted pix-
el intensity values of images. Specifically, the root mean square
error is defined as the average of the squared differences be-
tween the pixel intensities at corresponding positions in the
two images [23]

1 X 2
L(Xl’Yi) :ﬁguxl _Y"z,

where N denotes the amount of additional data; X; is a time
snapshot with areas covered by the cloud; Y;is additional data,
such as spectral or temporal data.

The output feature map GNN_output was calculated based
on the input feature maps Geyy ;and Geyy », Which were ob-
tained from CNN. The V function applies to the output ob-
tained from the previous convolutional operation

GNN_output = Geyy 1+ (C(Geyy 1, Gewn 2)),

where GNN_output is the result of a CNN containing content-
texture-spectral characteristic data; Ggyy ; is a feature map
created by a texture CNN; Geyy » is a feature map created by a
spectral CNN; C(Geyy 1, Geny 2) is all input feature maps ob-
tained by concatenating Geyy and Gewy 25 (Geww 15 Genw 2)
is a feature map obtained by convolutional operation with a
kernel that uses C(Geyy 1, Geyy ») as input.

A parallel residual architecture utilizing convolutional
neural networks is proposed to combine and enhance the in-
formation content of Sentinel-2 images. The Sentinel-2 image
data is divided into two sets with 10-meter and 20-meter reso-
lution. Band 10 is excluded from the spatial enhancement due
to its low radiometric quality and cross-band artifacts [22].
Given these sets, the proposed spatial enhancement of the data
is to use the 10-meter resolution version of the VHRP in the
20-meter bands. It is important to note that channels B5, B6
and B7 contain important information for estimating soil
moisture and forecasting weather conditions to optimize agri-
cultural processes. Band B8a measures the photosynthetic ac-
tivity of plants, which is a critical indicator for evaluating plant
health and growth. Bands B11 and B12 are used to measure

temperature changes on the land surface. It allows the detec-
tion of thermal anomalies and develops strategies for manag-
ing thermal resources. Thus, the information contained in the
20-meter channels is necessary for the land-based agricultural
sector, as it allows for accurate monitoring and evaluation of
various aspects of crop production and land management.

The next step is to apply the feature extraction block,
which has two branches: the first branch contains the pooling
(subsampling) and residual layer blocks, and the second
branch contains the detailed loss components. Additional
20-meter Sentinel-2 image channels load through the feature
extraction block in parallel. The data from both branches are
combined, and the result is subjected to low-pass filtering to
reduce noise and remove high-frequency components. Next,
add the detailed loss components, previously calculated, to the
resulting data. Subsequently discretize the result to achieve the
final enhancement of image information. A spatial feature fu-
sion component combines information from various resolu-
tion ranges. After the parallel residual learning component,
the obtained feature maps combine and transfer to the next
level. Utilize two fully connected layers, each followed by
ReLLU activation. Next, the convolution layer transforms the
feature maps into a spatial residual image, matching the chan-
nel count of the high-resolution images [24]

2 =ReLU(w, -z+b)
zf2 ZRCLU(sz'Zf|+bf2)7 (1)
L =Wy tby

where z is the output data obtained after the previous convolu-
tion operation; z is the output data of the first fully connected
layer (FC); zp, is the output data of the second layer; z, is the
final output; wy, wy, wys is FC layer weights; b, by, b is FC
layer displacements.

Thus, in formula (1), the variable z denotes the output af-
ter the preliminary convolution operation applied to the input
image. After this operation, the resulting feature maps are sent
to the first fully connected layer, denoted as z;. Then, using
the weights w,; and bias by, this data is processed by applying
the activation function ReLU.

d

Fig. 2. The Sentinel-2 data set used in the experiments:

f

a — 10-meter data (channels 4-3-2in RGB); b — 20-meter data (channels 12-8A-5in RGB); ¢ — result after PCA transformation; d — under the
10-meter data area; e — under the 20-meter data area, f — under the PCA transformation area

146 ISSN 2071-2227, E-ISSN 2223-2362, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2024, N2 5



Results. This work proposes to use experimental data from
the Sentinel-2 Level-1C spacecraft. The training data covers
the scene of the village of Velyka Bilozerka in Zaporizhzhia
region of Ukraine in the spring of 2023.

During this period, farmers are preparing fields for the
sowing campaign. The study showed that in the period
from spring to summer, cloud cover in Velyka Bilozerka vil-
lage increases compared to other seasons. It is due to the
characteristic meteorological conditions during this peri-
od, such as more intense cyclones and the spread of mois-
ture from the Atlantic Ocean due to the influence of spring
irrigation. Such increased cloud cover can affect the effi-
ciency of data collection from artificial satellites, in par-
ticular, reduce image quality and complicate the process of

analyzing land data. Fig. 2 shows 10-meter and 20-meter
data channels.

During the experiments, the parameters of the proposed
technology in this paper were as follows: first, train the parallel
residual architecture of convolutional neural networks
(ResNet)3x on 60 x 60 pixel patches of data reduced by a factor
of 2. Similarly, to train a parallel residual network based on
ResNet5Sx, the data was reduced by a factor of 5 and combined
into 20 x 20 pixel patches. Train each network with 3,600 pairs
of samples and allocate 10 % of these samples for data valida-
tion. Each branch contains 5 ResBlocks, and the 3 x 3 convo-
lutional layers use 128 filters, except for the final convolutional
layer. The Keras framework implemented the networks used.
Fig. 3 presents the results from both the experimental settings

Fig. 3. Results of Sentinel-2 image information enhancement:

a — original image; b — proposed technology; c — ATWT; d — AWLP; e — Brovey, f— GS; g— HCS; h— HPF;i— HPFC;j— LMM; k — LMVM;

- HIS
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and traditional processing methods, enabling a comparison of
their impact on the information content of the images.

To compare the effectiveness of the proposed method with
existing methods (ATWT, AWLP, HPF, GS, HCS, LMM,
Brovey, IHS, HPFC, and LMVM), evaluators used quality
metrics for each method based on Sentinel-2 images. They as-
sessed the methods using RMSE (Root Mean Square Error),
CC (Correlation Coefficient), ERGAS (Relative Global Er-
ror), SAM (Spectral Angle Mapper), UIQI (Universal Image
Quality Index), and SRE (Spectral Reconstruction Error).
Table presents the results. To analyze the quantitative perfor-
mance of traditional image processing methods from Table,
we can conclude that the proposed technology demonstrates
better results: the low RMSE value (3.64) indicates high ac-
curacy of spectral properties reproduction, and the high CC
correlation coefficient (0.997) confirms a solid linear relation-
ship between the estimated and observed images. In addition,
the low SAM value (0.52) and high UIQI (0.999) indicate high
quality and structural similarity between the calculated and
observed images. These results demonstrate the effectiveness
of the proposed method in reproducing the spectral properties
of Sentinel-2 images.

The HPFC method is not effective among the investigated
methods. This method has the highest values of each metric
compared to the other methods, indicating its low efficiency in
reproducing the spectral characteristics of Sentinal-2 images.

To test the effectiveness of the technology on real Senti-
nel-2 data, we directly loaded the original low-resolution da-
tasets and the high-resolution data into the trained networks.
This means that the (20, 10 m) resolution datasets obtain the
high-resolution 10 m images. Since there are no ground data
available, spectral bands with higher resolution were consid-
ered as reference data to evaluate the effectiveness of the reso-
lution enhancement method. As part of the experiments, four
spectral bands with a resolution of 10 m were used as reference
data for visual evaluation of the results. The results of the im-
age processing methods shown in Fig. 3 confirm that the pro-
posed technology significantly improves the sharpness of edg-
es and the saturation of details of ground objects.

The image reconstructed using the ATWT method demon-
strates the preservation of spectral and spatial characteristics,
but some artifacts in the form of noise and blurring are ob-
served. The result of applying the AWLP method is character-
ized by high-quality preservation of details and colors. The im-
age has clear contours and low noise. The image obtained using
the Brovey method reproduces the spectral characteristics with
high accuracy, but there are artifacts in the form of blurring and

Table
Quantitative assessments
Method Metrics

RMSE | CC | ERGAS | SAM | UIQI | SRE
ATWT 11.29 | 0.97 16.47 5.27 | 0.98 | 0.01
AWLP 10.25 | 0.97 16.01 4.81 0.98 | 0.01
HPF 13.94 | 0.95 19.46 6.48 | 0.99 | 0.02
GS 10.92 | 0.96 63.77 518 | 0.95 | 0.01
HCS 13.20 | 0.96 13.24 598 | 0.99 | 0.02
LMM 8.38 0.97 19.95 396 | 0.98 | 0.04
Brovey 10.34 | 0.96 69.33 4.89 | 0.95 | 0.01
IHS 12.29 | 0.95 71.30 5.82 | 0.99 | 0.01
HPFC 17.04 | 0.95 22.27 6.19 | 0.98 | 0.01
LMVM 13.59 | 0.95 20.62 6.37 | 0.99 | 0.01
Proposed 3.64 0.99 5.91 0.52 1 0
technology

color saturation. The GS method resulted in an image with a
certain level of blurring and loss of detail, especially in areas
with thin contours. The image produced by HCS reproduces
details with the specified accuracy, but there are artifacts in the
form of noise and low resolution. The image created by the
HPF method is characterized by high resolution and sharp de-
tails, but noise is present. The HPFC method resulted in a sig-
nificant loss of detail and a high level of blurring in the image.
The image reconstructed using the IHS method has some arti-
facts in the form of color saturation and loss of detail in dark
areas. The LMM method provides high-quality reproduction
of image details and colors without noticeable noise. The im-
age obtained by the LMVM method has clear details and colors
without noticeable noise or artifacts. The image obtained using
the proposed method reproduces spectral and spatial charac-
teristics with high accuracy and minimal artifacts.

Fig. 4 shows a graph of the execution time of image pro-
cessing methods. The fastest method is Brovey, which runs in
just 0.016 seconds due to its simple computational procedure.
On the other hand, the slowest method is LMVM, and the
proposed technology is due to a more complex computational
procedure and a large amount of data to be processed.

This study implemented the proposed technology on a
personal computer with an Intel(R) Core(TM) i5-7400 CPU
running at 3.00 GHz, an Nvidia GTX 950M graphics proces-
sor, and 16 GB of RAM. This configuration made it possible to
train the convolutional neural network. After completing the
training process of the artificial intelligence model, the team
designed the general architecture of the developed software
application. Fig. 5 displays the sequence and steps of applying
the image processing technology.

Python programming language implements the software
for the proposed information technology. The development
involved libraries such as TensorFlow, NumPy, Matplotlib,
Rasterio, GeoPandas, and Earthpy. These libraries facilitated
data handling, result visualization, and the implementation of
image processing techniques.

Conclusions. The paper proposes an intelligent technology
for processing Sentinel satellite images for mapping agricul-
tural lands using convolutional neural networks. The devel-
oped technology integrates Sentinel radar and optical images
using biquadratic interpolation, histogram alignment, convo-
lutional neural networks, and PCA transformations for cloud
masking and removal. It is proposed to use the parallel residual
CNN architecture, which allows combining data with different
resolutions (10 and 20 meters) and increasing the information
content of Sentinel-2 optical images. The proposed technology
reduces color distortion and increases the detail of digital opti-
cal images, which makes it possible to more accurately identify

Execution time for different merge methods

1.04

0.8

0.6

0.4

Execution time (sec)

0.2

0.0

Pan-sharpening method

Fig. 4. Execution Time of Various Image Processing Methods
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the boundaries of agricultural fields and analyze the condition
of the land in detail. Experimental results confirm the effec-
tiveness of the proposed approach: Root mean square error
(RMSE = 3.64), high correlation coefficient (CC = 0.997),
lowest extended normalized difference vegetation index (ER-
GAS = 5.91), low spectral angle of reflection (SAM = 0.52),
high universal image quality index (UIQI = 0.999) and mini-
mum value of spectral residual error (SRE = 0) indicate the suc-
cess of the developed methods. The results obtained can be
used to improve the methods for processing Sentinel satellite
images, which provide high spatial resolution and accurate
preservation of spectral characteristics. This development pro-
vides a foundation for improved geographic information tech-
nologies, which can be applied to land cover monitoring.

This research is carried out as part of the scientific project
“Development of software and hardware of intelligent technolo-
gies for sustainable cultivation of agricultural crops in war and
post-war times” funded by the Ministry of Education and Science
of Ukraine at the expense of the state budget (State Registration
No. 0124U000289).
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InTeNneKTya/lbHA TEXHOJIOTis 00POOKH
CYIYTHHKOBHX 300paxkeHb Sentinel
11 KapTorpa)yBaHHSI 3¢MHOTO MOKPHBY
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Merta. Po3po0Oka iHTeJIeKTyaJbHOI TEXHOJIOTiT 00pOOKU
CYIyTHUKOBHUX 300paxeHb Sentinel 3a 10MoOMoOroo 3roprt-
KOBUX HEMPOHHUX MepeX. Y pe3yabTaTi CHHTEe3y€EThCS 30-
OpaXeHHsI i3 TMOKpalleHOI MPOCTOPOBOIO PO3AiIBHOIO
3IATHICTIO.

Metomuka. [IpencraBieHa iHTeIeKTyajlbHa TEXHOJOTi,
1110 BUKOPUCTOBYE KOMOiHallil0 METOAIB OiKBalpaTUYHOI iH-
TeproJislii, ricrorpaMHOro BupiBHIOBaHHSI Ta PCA-
TEePEeTBOPEHHSI, a TAKOX TMapajiesIbHy 3JIUIIKOBY apXiTeKTy-
Py 3rOPTKOBUX HEMPOHHUX MepexX. BUKopucTaHHs TeXHOJIO-
rii miaBuinye iH(MOPMATUBHICTL ONTUYHUX 300pakeHb
Sentinel-2 3aBasKu 00’€MHAHHIO NAHUX i3 PO3AUTBHUMU
smatHocTsaMu 10 i 20 meTpiB. Y pesyabTaTi OTpUMaeEMO Tiep-
BUHHI 20-MeTpoBi 300pakeHHsI 3 MOKpPaIIeHOI MPOCTOPO-
BOIO PO3/IUIBHOIO 30ATHICTIO.

PesyabraTn. CepenHbokBanpaTuuyHa noxuoka (RMSE =
= 3,64) cBimYMTH MPO BUCOKY TOYHICTb BiITBOPEHHS CIIEK-
TpaJIbHUX BJIaCTUBOCTEH 300paxkeHb. KoedillieHT Kopesiii
(CC =0,997) miaTBepmxKye ayXe CUIbHY JiHIHY 3a1eKHICTh
MiX OILIIHEHMMHU Ta CHOCTEPEXYBAaHUMU 300paKeHHSIMU.
Husbke 3HAYeHHs CHEKTPaJIbHOTO KyTa BimoOpaXKeHHs
(SAM = 0,52) pa3oM i3 BUCOKHMM YHiBepCaJlbHUM iHIEKCOM

skocTi 300paxkeHHs (UIQI = 0,999) cBimyaTh Npo BHUCOKY
SIKICTb i CTPYKTYPHY MOAIOHICTh MiXK CUHT€30BaHMMMU Ta eTa-
JIOHHUMM 300pakeHHSIMU. Pe3ysbTaTu TeCTyBaHHS MiATBEp-
IDKYIOTh €(PeKTUBHICTh 3aIPOITOHOBAHOI TEXHOJIOTI y TTOKpa-
LIEHHI TIPOCTOPOBOI PO3IiIJIbHOI 3IaTHOCTI CYMyTHUKOBMX
300paxeHsb Sentinel.

HaykoBa noBusHa. KilacMuHi METOAM MiABUIIEHHS iH-
(opMaTHBHOCTI GaraTocreKTpaJIbHUX 300pakeHb pO3po0JIe-
Hi 17151 CyyTHUKOBUX 3HIMKIB i3 TaHXpOMaTUYHUMM KaHasa-
MM, HE MOXYTb OyTH O€3MocepeIHbO 3aCTOCOBAHI /10 3HIMKIB
cynyTHUKa Sentinel, OCKiJIbKM 1Ii 300pa’keHHSI HE MiCTSIThb
IMaHXpoMaTuYHui KaHai. KpiMm Toro, arMmocdepHi ymoBu, 30-
KpeMa HasiBHICTb XMap, BIUIMBAIOTh Ha $IKiCTb ONTUYHUX
3HIMKIiB, YCKJIQAHIOIOUM iX MOJAIbIIy TEMaTUYHY OOpPOOKY.
3anponoHoBaHa TEXHOJIOTiSl HA OCHOBI MeTO/iB OiKBaapaTuy-
HOI IHTepMoJIsLii, riCTOrPaMHOTO BUPIBHIOBAHHSI, 3rOPTKO-
BUX HelipoHHUX MepexX i PCA-niepeTBOpeHHSs 103BOJISIE BU-
JAIATA XMapy Ha 3HIMKAaX i TOKPaIlyBaTU MPOCTOPOBY 3/1aT-
HiCTb MepBUHHUX 20-METPOBUX KaHaJIiB ONTUYHUX CYITyTHU-
KOBUX 300paxkeHb Sentinel-2. LIst TexHOIOTis 1O3BOJISIE 3MEH-
IIATHA KOJBOPOBi CIOTBOPEHHSI W MiABUILMTU AETali3allilo
uuGpPOBUX ONTUYHUX 300paKeHb, 110 AA€ 3MOTY B MOAATb-
1IOMY OiJIbIII TOYHO aHAJTi3yBaTU CTaH 36MHOTO MTOKPUBY.

IIpakTiyna 3HaumMmicTe. OTpUMaHi pe3yabTaTu MOXYThb
OyTU BUKOPHUCTaHI UIS1 BIOCKOHAJIEHHSI METO/1iB 00pOOKHU Cy-
IMyTHUKOBUX 300paxeHb Sentinel, 110 3a0e3MeYy0Th OTPH-
MaHHS T€ONMpPOCTOPOBUX JAaHUX IMOKpAIIeHOI MPOCTOPOBOL
3[aTHOCTI 31 30€peKeHHSIM CHEKTPaJIbHUX XapaKTEPUCTUK.
Lle cTBOpIOE OCHOBY MJIsSI pO3POOKM HOBUX TeoiH(OpMaliii-
HUX CUCTEM [IJIS1 MOHITOPMHTY 36 MHOI TOBEPXHi.

KiiouoBi ciioBa: 3eopmkosa Heliponna mepedca, 300paicet-
Hs, ducmanuyiiine 30H0Y8aHHS, NPOCMOPOBA 30AMHICIb
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