Геоэнергетика Украинского кристаллического щита

Рейтинг:   / 3
ПлохоОтлично 

Authors:

О. Е. Хоменко, доктор технических наук, профессор, orcid.org/0000-0001-7498-8494, Национальный технический университет „Днепровская политехника“, г. Днепр, Украина, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

М. Н. Кононенко, кандидат технических наук, доцент, orcid.org/0000-0002-1439-1183, Национальный технический университет „Днепровская политехника“, г. Днепр, Украина, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Abstract:

Цель. Разработать аналитический метод, который позволяет исследовать энергетическое состояние горных пород в пределах Украинского кристаллического щита.

Методика. Аналитические исследования энергетического состояния горных пород выполнялось с помощью нового метода исследования – энтропийного. Исследование процессов перераспределения потенциальной энергии в массиве горных пород проводилось по аналогии с открытой термодинамической системой. Принятый методологический подход позволил исследовать процессы энергетического обмена в горных породах и закономерные преобразования одних видов энергии в другие.

Результаты. Проведен анализ и выполнена систематизация геодинамических условий при подземной разработке рудных месторождений Украины. Показаны пути развития новых гипотез, теорий и методов исследования энергетического состояния горных пород. Раскрыта проблематика описания в мировой практике природного состояния горных пород. Определены компоненты перераспределения энергии в массиве горных пород: энтропии, потенциальных напряжений и углов их действия. Проведена проверка полученных результатов на сходимость и сделаны соответствующие выводы по их применению.

Научная новизна. Термодинамический баланс в горных породах Украинского кристаллического щита формируется за счет уравновешивания вертикальных и горизонтальных энергетических потоков, которые при увеличении глубины разработки повышают по степенной зависимости компоненты тензора напряжений, отклоняя их от гидростатических.

Практическая значимость. Разработан энтропийный метод исследования, который позволяет исследовать естественное состояние горных пород с увеличением глубины. Усовершенствована классификация методов исследования напряженно-деформированного состояния горных пород за счет введения синергетической группы, которая включает энтропийный, термодинамический и энергетический методы. Установлено, что распространение энтропии в горных породах украинского кристаллического щита протекает во взаимно перпендикулярных направлениях, которые соответствуют вертикальным и горизонтальным энергетическим потокам.

References.

1. Khomenko, О., Sudakov, А., Malanchuk, Z., & Malanchuk, Ye. (2017). Principles of rock pressure energy usage during underground mining of deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2(158), 35-43.

2. Ilin, S. R., Samusya, V. I., Kolosov, D. L., Ilina, I. S., & Ilina, S. S. (2018). Risk-forming dynamic processes in units of mine hoists of vertical shafts. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5(167), 64-71. DOI: 10.29202/nvngu/2018-5/10.

3. Belmas, I., & Kolosov, D. (2011). The stress-strain state of the stepped rubber-rope cable in bobbin of winding. Technical and Geoinformational Systems in Mining: School of Underground Mining 2011, 211-214.

4. Hrinov, V., & Khorolskyi, A. (2018). Improving the process of coal extraction based on the parameter optimization of mining equipment. E3S Web Of Conferences, 60, 00017. DOI: 10.1051/e3sconf/20186000017.

5. Bondarenko, V. I., Kharin, Ye. N., Antoshchenko, N. I., & Gasyuk, R. L. (2013). Basic scientific positions of forecast of the dynamics of methane release when mining the gas bearing coal seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5(137), 24-30.

6. Gornostayev, S., Walker, R., Hanski, E., & Popovchenko, S. (2004). Evidence for the emplacement of ca. 3.0 Ga mantle-derived mafic-ultramafic bodies in the Ukrainian Shield. Precambrian Research132(4), 349-362. DOI: 10.1016/j.precamres.2004.03.004.

7. Babets, D. V., Sdvyzhkova, O. O., Larionov, M. H., & Te­reshchuk, R. M. (2017). Estimation of rock mass stability based on probability approach and rating systems. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2(158), 58-64.

8. Physical Sciences. (1976). Science News109(17), 267. DOI: 10.2307/3960928.

9. Gzovskiy, M. V., Turchaninov, I. A., Markov, G. A., & Batugin, S. A. (1973). Napryazhennoe so-stoyanie zemnoy kory po dannym izmereniy v gornykh vyrabotkakh i tektonofizicheskogo analiza. In Napryazhennoe sostoyanie zemnoy kory (p. 50).

10. Dreus, A. Yu., & Lysenko, K. Ye. (2016). Сomputer simulation of fluid mechanics and heat transfer processes at the working face of borehole. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5(155), 29-35.

11. Khomenko, O., Kononenko, M., & Bilegsaikhan, J. (2018). Classification of Theories about Rock Pressure. Solid State Phenomena, 277, 157-167. DOI: 10.4028/www.scientific.net/ssp.277.157.

12. Prigozhin, I. (2001). Vvedenie v termodinamiku neobratimykh protsessov.

13. Khomenko, O. (2012). Implementation of energy method in study of zonal disintegration of rocks. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4(130), 44-54.

14. Lavrinenko, V. F., & Lysak, V. I. (1977). Metod opredeleniya nachal’nogo napryazhennogo sostoyaniya massivov skal’nykh gornykh porod. Razrabotka rudnykh mestorozhdeniy, (24), 16-20.

15. Khomenko, O., & Maltsev, D. (2013). Laboratory research of influence of face area dimensions on the state of uranium ore layers being broken. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2(134), 31-37.

16. Bazarov, I. P. (1983). Termodinamika.

17. Khomenko, O., & Rudakov, D. (2010). The first Ukrainian corporative university. New Techniques And Technologies In Mining, 203-206. DOI: 10.1201/b11329-34.

18. Kovalenko, A. D. (1970). Osnovy termouprugosti.

19. Khomenko, O., Kononenko, M., & Petlovanyi, M. (2015). Analytical modeling of the backfill massif deformations around the chamber with mining depth increase. New Developments In Mining Engineering 2015, 265-269. DOI: 10.1201/b19901-47.

20. Glensdorf, P., & Prigozhin, I. (1973). Termodi­namicheskaya teoriya struktury, ustoychivosti i fluktua­tsii.

21. Dortman, N. B. (1976). Fizicheskie svoystva gornykh porod i poleznykh iskopaemykh: spravochnik geofizika.

22. Khomenko, O., Kononenko, M., & Myronova, I. (2013). Blasting works technology to decrease an emission of harmful matters into the mine atmosphere. Mining Of Mineral Deposits, 231-235. DOI: 10.1201/b16354-43.

23. Kozhevnykov, A., Dreus, A., Baochang, L., & Sudakov, A. (2018). Drilling fluid circulation rate influence on the contact temperature during borehole drilling. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1(163), 35-42. DOI: 10.29202/nvngu/2018-1/14.

24. Khomenko, O., & Barna, T. (2019). Zonal-and-Wave Structure of Open Systems on Micro, Mega- and Macrolevels of the Universe. Philosophy And Cosmology22, 24-32. DOI: 10.29202/phil-cosm/22/3.

25. Prigogine, I. (1947). Etude thermodynamique des phenomenes irréversibles.

26. Sudakov, A., Dreus, A., Khomenko, O., & Sudakova, D. (2017). Analytical study of heat transfer in absorptive horizons of borehole at forming cryogenic protecting of the plugging material. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3(159), 38-42.

27. Shashenko, O. M., Sdvyzhkova, O. O., & Babets, D. V. (2010). Method of argument group account in geomechanical calculation. In 12th International Symposium on Environmental Issues and Waste Management in Energy and Mineral Production SWEMP 2010, (pp. 488-493).

28. Sdvizhkova, Ye. A., Babets, D. V., & Smirnov, A. V. (2014). Support loading of assembly chamber in terms of Western Donbas plough longwall. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5(143), 26-32.

29. Sudakov, А., Khomenko, О., Isakova, M., & Sudakova, D. (2016). Concept of numerical experimentof isolation of absorptive horizons by thermoplastic materials. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5(155), 12-16.

30. Sdvyzhkova, O. O., Babets, D. V., Kravchenko, K. V., & Smirnov, A. V. (2016). Determining the displacements of rock mass nearby the dismantling chamber under effect of plow longwall. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2(152), 34-42.

31. Khomenko, O., Kononenko, M., & Petlyovanyy, M. (2014). Investigation of stress-strain state of rock massif around the secondary chambers. Progressive Technologies Of Coal, Coalbed Methane, And Ores Mining, 241-245. DOI: 10.1201/b17547-43.

32. Khomenko, O., Kononenko, M., & Myronova, I. (2017). Ecological and technological aspects of iron-ore underground mining. Mining Of Mineral Deposits11(2), 59-67. DOI: 10.15407/mining11.02.059.

33. Obert, L. (1962). In situ determination of stress in rock. Mining Engineering, 14(8), 51-58.

34. Zhanchiv, B., Rudakov, D., Khomenko, O., & Tsen­dzhav, L. (2013). Substantiation of mining parameters of Mongolia uranium deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4(136), 10-18.

35. Stupnik, M., Kalinichenko, V., Pysmennyi, S., Fedko, M., & Kalinichenko, O. (2016). Method of simulating rock mass stability in laboratory conditions using equivalent materials. Mining Of Mineral Deposits10(3), 46-51. DOI: 10.15407/mining10.03.046.

36. Khomenko, O., Tsendjav, L., Kononenko, M., & Janchiv, B. (2017). Nuclear-and-fuel power industry of Ukraine: production, science, education. Mining Of Mineral Deposits, 11(4), 86-95. DOI: 10.15407/mi­ning11.04.086.

37. Pivnyak, G., Dychkovskyi, R., Smirnov, A., & Che­red­nichenko, Y. (2013). Some aspects on the software simulation implementation in thin coal seams mining. Energy Efficiency Improvement Of Geotechnical Systems, 1-10. DOI: 10.1201/b16355-2.

38. Stupnik, N. I., Fedko, M. B., Pismenniy, S. V., & Kolosov, V. A. (2014). Development of recommendations for choosing excavation support types and junctions for uranium mines of state-owned enterprise skhidhzk. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5(143), 21-25.

39. Myronova, I. (2015). The level of atmospheric pollution around the iron-ore mine. New Developments In Mining Engineering 2015, 193-197. DOI: 10.1201/b19901-35.

40. Khomenko, O., Kononenko, M., Myronova, I., & Su­dakov, A. (2018). Increasing ecological safety during underground mining of iron-ore deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2(164), 29-38. DOI: 10.29202/nvngu/2018-2/3.

41. Mironova, I., & Borysovs’ka, O. (2014). Defining the parameters of the atmospheric air for iron ore mines. Progressive Technologies Of Coal, Coalbed Methane, And Ores Mining, 333-339. DOI: 10.1201/b17547-57.

42. Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., & Malanchuk, Y. (2018). Analytical Research of the Stress-Deformed State in the Rock Massif around Faulting. International Journal Of Engineering Research In Africa, 35, 77-88. DOI: 10.4028/www.scientific.net/jera.35.77.

 повний текст / full article



Посетители

3371181
Сегодня
За месяц
Всего
51
7833
3371181

Гостевая книга

Если у вас есть вопросы, пожелания или предложения, вы можете написать их в нашей «Гостевой книге»

Регистрационные данные

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Журнал зарегистрирован в Министерстве юстиции Украины.
 Регистрационный номер КВ № 17742-6592ПР от 27.04.2011.

Контакты

40005, г. Днепр, пр. Д. Яворницкого, 19, корп. 3, к. 24 а
Тел.: +38 (056) 746 32 79.
e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.
Вы здесь: Главная Архив журнала по выпускам 2019 Содержание №3 2019 Разработка месторождений полезных ископаемых Геоэнергетика Украинского кристаллического щита