Articles

Crushed stone supply challenges for infrastructure development in Hungary

User Rating:  / 0
PoorBest 

Authors:


L.Ezsias, orcid.org/0009-0003-2637-2830, Szechenyi Istvan University, Gyor, Hungary; Colas Eszakko Ltd., Tarcal, Hungary

K.Kozma, orcid.org/0000-0002-0352-9845, Szechenyi Istvan University, Gyor, Hungary

R.Tompa, orcid.org/0009-0009-3202-203X, Colas Eszakko Ltd., Tarcal, Hungary; Institute of Mining and Energy, University of Miskolc, Miskolc, Hungary

S.Fischer*, orcid.org/0000-0001-7298-9960, Szechenyi Istvan University, Gyor, Hungary, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

* Corresponding author e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


повний текст / full article



Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2024, (6): 028 - 037

https://doi.org/10.33271/nvngu/2024-6/028



Abstract:


The rapid expansion of Hungary’s infrastructure projects, especially in railway construction, has significantly increased the demand for crushed stone. Both national and EU-funded initiatives have strained supply chains, resulting in logistical challenges and material shortages. With limited domestic production capacity, efficient resource management is crucial to keeping projects on track. This paper evaluates Hungary’s supply chain for crushed stone, identifying key weaknesses and proposing solutions to enhance sustainability.


Purpose.
This study investigates the logistical and supply chain difficulties in delivering crushed stone for Hungary’s railway infrastructure projects. It evaluates current supply limitations, proposes ways to improve domestic resource management, and offers strategies to reduce reliance on imports while emphasizing sustainability.


Methodology.
The research applies Geographic Information System (GIS) modeling to analyze transportation routes for crushed stone, suggesting ways to streamline logistics. It examines the production capacities of Hungarian quarries, some producing 15,000–25,000 tons monthly, and assesses the impact of European and Hungarian regulations on material quality and availability. The potential for integrating recycled materials into the supply chain is also explored.


Findings.
Hungary’s domestic quarries cannot meet the high demand for railway ballast, estimated at 192,000 tons annually, leading to import reliance. GIS modeling shows optimized transportation routes could cut costs and carbon emissions. Incorporating smaller stone fractions and recycled materials could mitigate shortages, with recycled materials potentially comprising 40 % of railway ballast.


Originality.
By integrating geological, logistical, and regulatory insights, this paper provides novel approaches for addressing Hungary’s crushed stone supply chain challenges. The use of GIS modeling and recycled materials offers innovative solutions for reducing environmental impacts.


Practical value.
The findings present actionable strategies for improving Hungary’s supply chain efficiency, promoting recycling, and optimizing logistics. These solutions are applicable to Hungary and other regions facing similar infrastructure material supply challenges.



Keywords:
crushed stone supply, construction materials, infrastructure logistics, railway construction projects

References.


1. Kuchak, A. T. J., Marinkovic, D., & Zehn, M. (2020). Finite element model updating–Case study of a rail damper. Structural Engineering and Mechanics, 73(1), 27-35. https://doi.org/10.12989/sem.2020.73.1.027.

2. Kuchak, A. T. J., Marinkovic, D., & Zehn, M. (2021). Parametric investigation of a rail damper design based on a lab-scaled model. Journal of Vibration Engineering Technologies, 9, 51-60. https://doi.org/10.1007/s42417-020-00209-2.

3. Kampczyk, A., & Rombalska, K. (2023). Configuration of the geometric state of railway tracks in the sustainability development of electrified traction systems. Sensors, 23(5), 2817. https://doi.org/10.3390/s23052817.

4. Fischer, S., & Szürke, S. K. (2023). Detection process of energy loss in electric railway vehicles. Facta Universitatis, Series: Mechanical Engineering, 21(1), 81-99. https://doi.org/10.22190/FUME221104046F.

5. SNAP-SEE project (2019). Sustainable Aggregates Planning in South East Europe. Retrieved from http://www.snapsee.eu.

6. European Commission (2023). Critical raw materials. Retrieved from https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en.

7. Ézsiás, L., Kozma, K., Tompa, R., & Fischer, S. (2024). Supplementary reference list. https://doi.org/10.13140/RG.2.2.26170.81605/1.

8. Sumbal, M. (2023). Sustainable technology strategies for transportation and logistics challenges: an implementation feasibility study. Sustainability, 15(21), 15224. https://doi.org/10.3390/su152115224.

9. Ézsiás, L., & Fischer, S. (2023). Alternative uses for crushed stone products generated to meet the raw material needs of asphalt production in Hungary. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 66-73. https://doi.org/10.33271/nvngu/2023-5/066.

10. Butt, A., Arshi, T., Rao, V., & Tewari, V. (2020). Implications of belt and road initiative for supply chain management: a holistic view. Journal of Open Innovation Technology Market and Complexity, 6(4), 136. https://doi.org/10.3390/joitmc6040136.

11. Sawyerr, E. (2023). Impact pathways: unravelling the hybrid food supply chain – identifying the relationships and processes to drive change. International Journal of Operations & Production Management, 44(7), 1310-1323. https://doi.org/10.1108/ijopm-05-2023-0362.

12. Rosi, M., & Obrecht, M. (2023). Sustainability topics integration in supply chain and logistics higher education: where is the middle east? Sustainability, 15(8), 6955. https://doi.org/10.3390/su15086955.

13. Bozhyk, D., Sokur, M., & Biletskyi, B. (2022). Determining the rational operating parameters for granite crushing to obtain cubiform crushed stone. Mining of Mineral Deposits, 16(3), 18-24. https://doi.org/10.33271/mining16.03.018.

14. Saik, P., Dreshpak, O., Ishkov, V., Cherniaiev, O., & Anisimov, O. (2024). Change in the qualitative composition of non-metallic mineral raw materials as a result of blasting operations. Mining of Mineral Deposits, 18(3), 114-125. https://doi.org/10.33271/mining18.03.114.

15. Cherniaiev, O., Anisimov, O., Saik, P., Dychkovskyi, R., & Lozynskyi, V. (2024). On the issue of shipping finished products in mining of non-metallic mineral raw materials. E3S Web of Conferences, 567, 01005. https://doi.org/10.1051/e3sconf/202456701005.

16. Rehman, S. (2017). Reverse logistics and challenges: supply chain management of automobile industry. Advances in Applied Sciences, 2(5), 80. https://doi.org/10.11648/j.aas.20170205.15.

17. Chikwava, B., Shee, H., Millcock, S., & Chapman, P. (2022). Organic compost supply chain analysis: a tce perspective. Operations and Supply Chain Management an International Journal, 15(4), 526-539. https://doi.org/10.31387/oscm0510364.

18. Lee, K., & Wu, Y. (2014). Integrating sustainability performance measurement into logistics and supply networks: a multi-methodological approach. The British Accounting Review, 46(4), 361-378. https://doi.org/10.1016/j.bar.2014.10.005.

19. Török, Á. (2015). Los Angeles and Micro-Deval values of volcanic rocks and their use as aggregates, examples from Hungary. In G. Lollino, A. Manconi, F. Guzzetti, M. Culshaw, P. Bobrowsky, & F. Luino (Eds.). Engineering Geology for Society and Territory-Volume 5: Urban Geology, Sustainable Planning and Landscape Exploitation, (pp. 115-118). Springer International Publishing. https://doi.org/10.1007/978-3-319-09048-1_23.

20. Daultani, Y., Cheikhrouhou, N., Pratap, S., & Prajapati, D. (2022). Forward and reverse logistics network design with sustainability for new and refurbished products in e-commerce. Operations and Supply Chain Management an International Journal, 15(4), 540-550. https://doi.org/10.31387/oscm0510365.

21. Onyango, J. (2023). Supply chain solutions for essential medicine availability during covid-19 pandemic. Journal of Humanitarian Logistics and Supply Chain Management, 14(1), 118-133. https://doi.org/10.1108/jhlscm-05-2022-0056.

22. Gruchmann, T., Melkonyan, A., & Krumme, K. (2018). Logistics business transformation for sustainability: assessing the role of the lead sustainability service provider (6pl). Logistics, 2(4), 25. https://doi.org/10.3390/logistics2040025.

23. Dobroszek, J. (2020). Supply chain and logistics controller – two promising professions for supporting transparency in supply chain management. Supply Chain Management an International Journal, 25(5), 505-519. https://doi.org/10.1108/scm-04-2019-0169.

24. Thoolen, P. (2023). Interdisciplinary challenges associated with rapid response in the food supply chain. Supply Chain Management an International Journal, 29(3), 444-459. https://doi.org/10.1108/scm-01-2023-0040.

25. Forslund, H., Björklund, M., & Ülgen, V. (2021). Challenges in extending sustainability across a transport supply chain. Supply Chain Management an International Journal, 27(7), 1-16. https://doi.org/10.1108/scm-06-2020-0285.

26. Tasche, L. (2023). Digital supply chain twins in urban logistics system. Tehnički Glasnik, 17(3), 405-413. https://doi.org/10.31803/tg-20230518081537.

27. Aggarwal, B., Aggarwal, R., & Singh, S. P. (2018). Studying the inter-relationship amongst the barriers to implementation of analytics in manufacturing supply chains. International Journal of Computer Applications, 181(34), 12-19. https://doi.org/10.5120/ijca2018918236.

28. Fulconis, F., Paché, G., & Reynaud, E. (2019). Frugal supply chains: a managerial and societal perspective. Society and Business Review, 14(3), 228-241. https://doi.org/10.1108/sbr-06-2018-0059.

29. Sumbal, M. (2023). Logistics performance system and their impact on economic corridors: a developing economy perspective. Industrial Management & Data Systems, 124(3), 1005-1025. https://doi.org/10.1108/imds-03-2023-0151.

30. Pham, N. (2023). Role of green logistics in the construction of sustainable supply chains. Polish Maritime Research, 30(3), 191-211. https://doi.org/10.2478/pomr-2023-0052.

31. Ézsiás, L., Tompa, R., & Fischer, S. (2024). Investigation of the possible correlations between specific characteristics of crushed stone aggregates. Spectrum of Mechanical Engineering and Operational Research, 1, 10-26. https://doi.org/10.31181/smeor1120242.

32. Volkov, V., Taran, I., Volkova, T., Pavlenko, O., & Berezhnaja, N. (2020). Determining the efficient management system for a specialized transport enterprise. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 185-191. https://doi.org/10.33271/nvngu/2020-4/185.

33. Baldini, G., Oliveri, F., Braun, M., Seuschek, H., & Hess, E. (2012). Securing disaster supply chains with cryptography enhanced RFID. Disaster Prevention and Management an International Journal, 21(1), 51-70. https://doi.org/10.1108/09653561211202700.

34. Saukenova, I., Oliskevych, M., Taran, I., Toktamyssova, A., Aliakbarkyzy, D., & Pelo, R. (2022). Optimization of schedules for early garbage collection and disposal in the megapolis. Eastern-European Journal of Enterprise Technologies, 1(3(115)), 13-23. https://doi.org/10.15587/1729-4061.2022.251082.

35. Eurostat (2022). Key Figures on European Transport. Retrieved from https://ec.europa.eu/eurostat/documents/15216629/15589759/KS-07-22-523-EN-N.pdf.

36. Hungarian Central Statistical Office – Magyar Központi Statisztikai Hivatal (2022). Transport performance, 2022. I. quarter. Retrieved from https://www.ksh.hu/docs/hun/xftp/stattukor/sza/20221/index.html.

37. Hungarian Association of Logistic Service Centers – Magyar Logisztikai Szolgáltató Központok Szövetsége (2024). Freight transport performance continues to fall due to economic difficulties in the EU. Retrieved from https://www.mlszksz.hu/tovabb-csokkent-az-aruszallitas-teljesitmenye-az-eu-s-gazdasagi-nehezsegek-miatt/?v=35b5282113b8.

38. European Aggregates Association (2023). Roadmap to 2030. Retrieved from https://www.aggregates-europe.eu/wp-content/uploads/2023/03/UEPG-Roadmap2030_Web.pdf.

39. European Commission (2019). The European Green Deal. Retrieved from https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en.

40. Statista (2024). Distribution of carbon dioxide (CO₂) emissions in the European Union (EU-27) in 2022, by sector. Retrieved from https://www.statista.com/statistics/1240108/sector-carbon-dioxide-emissions-shares-eu/.

41. Geotrade (2023). How construction and demolition waste affects climate change? Retrieved from www.geotrade.hu/hogyan-befolyasoljak-az-epitesi-es-bontasi-hulladekok-a-klimavaltozast/.

42. Építész Fórum (2021). Reducing CO2 emissions from construction through renovation Retrieved from https://epiteszforum.hu/az-epitkezesek-co2-kibocsatasanak-csokkentese-felujitason-keresztul.

43. Roemer Construction (2023). Sustainable construction solutions for the environment. Retrieved from https://roemer.hu/fenntarthato-epitoipari-megoldasok/.

44. Hungarian Public Road Nonprofit Zrt – Magyar Közút Nonprofit Zrt. (2019). Bridges with a total load capacity of 40 t and below 40 t on the road network of Borsod-Abaúj-Zemplén county. Retrieved from https://internet.kozut.hu/wp-content/uploads/2019/korlatozasok/sulykorlatozas-terkepek/Borsod_40t_sulykorl.jpg.

45. Dižo, J., & Blatnický, M. (2019). Investigation of ride properties of a three-wheeled electric vehicle in terms of driving safety. Transportation Research Procedia, 40, 663-670. https://doi.org/10.1016/j.trpro.2019.07.094.

46. Tompa, R. (2020). Vasúti ágyazati zúzottkövek minőségi paramétereinek változásai a rakodás és szállítás függvényében. Műszaki Földtudományi Közlemények, 89(2), 7-13.

47. Betonopus (2000). Vasúti ágyazati zúzottkövek minőségi követelményei. Retrieved from https://www.betonopus.hu/notesz/vasuti-zuzottko.pdf.

48. Buruzs, A., & Kozma, K. (2023). The realization of a circular economy in the construction industry and its adaptation to EU standards in Hungary. Chemical Engineering Transactions, 107(1), 535-540. https://doi.org/10.3303/CET23107090.

49. Kozma, K. (2022). Az építési-bontási hulladék. In: Boros, A., & Torma, A. (Eds.), Innovatív újrahasznosítás a zöld építésgazdaság területén, (pp. 20-29). Győr, Magyarország: Universitas-Győr Nonprofit Kft.

50. Kozma, K. (2022). Az Európai Uniós és a hazai célok az építési-bontási hulladék vonatkozásában. In: Boros, A., & Torma, A. (Eds.). Innovatív újrahasznosítás a zöld építésgazdaság területén, (pp. 41-49). Győr, Magyarország: Universitas-Győr Nonprofit Kft.

51. NIF Zrt. (2022). Vasúti infrastruktúrás beruházások adatai. Retrieved from https://archivum.nif.hu/.

52. Indraratna, B., Salim, W., & Rujikiatkamjorn, C. (2023). Advanced rail geotechnology: Ballasted track (2 nd ed.). CRC Press, p. 466. https://doi.org/10.1201/9781003278979.

53. Gou, Y., Xie, J., Fan, Z., Markine, V., Connolly, D. P., & Jing, G. (2022). Railway ballast material selection and evaluation: A review. Construction and Building Materials, 344, 128218. https://doi.org/10.1016/j.conbuildmat.2022.128218.

 

Visitors

7602784
Today
This Month
All days
2428
6415
7602784

Guest Book

If you have questions, comments or suggestions, you can write them in our "Guest Book"

Registration data

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Journal was registered by Ministry of Justice of Ukraine.
Registration number КВ No.17742-6592PR dated April 27, 2011.

Contacts

D.Yavornytskyi ave.,19, pavilion 3, room 24-а, Dnipro, 49005
Tel.: +38 (066) 379 72 44.
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
You are here: Home