Strength analysis of the model 918 wagon under non-typical bulk loads

User Rating:  / 0
PoorBest 

Authors:


O.V.Fomin*, orcid.org/0000-0003-2387-9946, The State University of Infrastructure and Technologies, Kyiv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

P.M.Prokopenko, orcid.org/0000-0002-1631-6590, Branch “Scientific-research and design and technological institute of railway transport” JSC “Ukrainian railways”, Kyiv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

A.M.Fomina, orcid.org/0000-0002-9810-8997, Volodymyr Dahl East Ukrainian National University, Kyiv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

A.O.Klymash, orcid.org/0000-0002-4055-1195, Volodymyr Dahl East Ukrainian National University, Kyiv, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

S.V.Kuzmenko, orcid.org/0000-0003-0871-9864, Volodymyr Dahl East Ukrainian National University, Kyiv, Ukraine, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

* Corresponding author e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


повний текст / full article



Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2024, (4): 067 - 072

https://doi.org/10.33271/nvngu/2024-4/067



Abstract:



Purpose.
Highlighting the results of the analysis of the stress-deformed state of the wagon body of the 918 model under non-typical loads with bulk cargo. Such an analysis was carried out with the aim of investigating the possibility of transportation of various types of bulk cargo (for example, various types of raw materials, agricultural products, construction materials, etc.) in the existing design of the section of the refrigerated wagon.


Methodology.
In order to ensure uninterrupted railway transportation in today’s difficult conditions, it is proposed to use scientific and applied approaches to develop the possibility of using existing models of wagons for types of transportation that are not typical for them. Namely, to consider the possibility of using refrigerated wagons for the transportation of bulk cargo. A systematic approach is used to conduct such research. This included: determination of the study of the specifics of the impact of bulk cargo on rolling stock structures; analysis of design and technological documentation to create a spatial 3D model of the wagon under investigation; creation of a calculation model using a modern software complex; checking the adequacy of the developed model and the accuracy of the data obtained with its help; application of non-typical design loads; obtaining and analyzing pictures of stress-strain states by the finite element method.


Findings.
A 3D model of the body module of the model 918 wagon was developed. The results of the analysis of the equivalent stress plot according to the first mode proved that the greatest stresses are 800 MPa, that is, they significantly exceed the permissible ones. According to the third mode, the highest stresses are 320 MPa and also exceed the permissible ones. The results of the analysis of the plot of equivalent stresses, which occur during expansion, proved that the loads are excessive. The cladding, supported only by racks, cannot hold the load from the bulk cargo.


Originality.
A strength analysis of the existing design of a refrigerated wagon section was conducted under non-typical bulk cargo loads.


Practical value.
The obtained results of the analysis of the stressed-deformed state of the body of the model 918 wagon when loaded with bulk cargo made it possible to assess the potential possibilities of such transportation. It is expedient to use such results when carrying out research and development works on the improvement (modernization) of the existing sections of refrigerated wagons to ensure the possibility of transporting bulk cargo in them. This, in turn, will increase the efficiency of the domestic fleet of freight wagons.



Keywords:
mechanical engineering, freight wagons, strength calculations, bulk loads

References.


1. Koshel, O., Sapronova, S., & Kara, S. (2023). Revealing patterns in the stressed-strained state of load-bearing structures in special rolling stock to further improve them. Eastern-European Journal of Enterprise Technologies, 4(7(124)), 30-42. https://doi.org/10.15587/1729-4061.2023.285894.

2. Horobets, V. L., Miamlin, S. V., & Yanhulova, O. L. (2015). Prospects for the development of methods for estimating the service life of railway rolling. Visnyk sertyfikatsii zaliznychnoho transportu, 8, 44-47.

3. Li, X., Fang, J., Zhang, Q., Zhao, S., & Guan, X. (2020). Study on Key Technology of Railway Freight Car Body Fatigue Test. Journal of Failure Analysis and Prevention, 20(1), 261-269. https://doi.org/10.1007/s11668-020-00828-7.

4. Poveda-Reyes, S., Rizzetto, L., Triti, C., Shi, D., García-Jiménez, E., Molero, G. D., & Santarremigia, F. E. (2021). Risk evaluation of failures of the running gear with effects on rail infrastructure. Engineering Failure Analysis, 128, 105613. https://doi.org/10.1016/j.engfailanal.2021.105613.

5. Milenković, M., Bojović, N., & Abramin, D. (2023). Railway freight wagon fleet size optimization: A real-world application. Journal of Rail Transport Planning & Management, 26, 100373. https://doi.org/10.1016/j.jrtpm.2023.100373.

6. Rakshit, U., Malakar, B., & Roy, B. K. (2018). Study on Longitudinal Forces of a Freight Train for Different Types of Wagon Connectors. IFAC-PapersOnLine, 51(1), 283-288. https://doi.org/10.1016/j.ifacol.2018.05.074.

7. Sokolov, V., Porkuian, O., Krol, O., & Stepanova, O. (2021). Design Calculation of Automatic Rotary Motion Electrohydraulic Drive for Technological Equipment. In: Advances in Design, Simulation and Manufacturing IV. DSMIE 2021. Lecture Notes in Mechanical Engineering, 1, 133-142. Springer, Cham. https://doi.org/10.1007/978-3-030-77719-7_14.

8. Krol, O., & Sokolov, V. (2020). Modeling of Spindle Node Dynamics Using the Spectral Analysis Method. In: Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering, 1, 35-44. Springer, Cham. https://doi.org/10.1007/978-3-030-50794-7_4.

9. Lai, J., Xu, J., Wang, P., Yan, Z., Wang, S., Chen, R., & Sun, J. (2021). Numerical investigation of dynamic derailment behavior of railway vehicle when passing through a turnout. Engineering Failure Analysis, 121, 105123. https://doi.org/10.1016/j.engfailanal.2020.105132.

10. Clarhaut, J., Hayat, S., Conrard, B., & Coquempot, V. (2010). The concept of the smart wagon for improving the safety of a railroad transportation system. IFAC Proceedings, 43(8), 638-643. https://doi.org/10.3182/20100712-3-FR-2020.00102.

11. Fomin, O., & Lovska, A. (2021). Determination of dynamic loading of bearing structures of freight wagons with actual dimensions. Eastern-European Journal of Enterprise Technologies, 2(7(110)). https://doi.org/10.15587/1729-4061.2021.220534.

12. Vega, B., & Perez, J. (2023), Comparative analysis of fatigue strength of a freight wagon frame. Welding in the World, 68, 321-332.

13. Melnyk, O., Onyshchenko, S., Onishchenko, O., Lohinov, O., & Ocheretna, V. (2023). Integral Approach to Vulnerability Assessment of Ship’s Critical Equipment and Systems. Transactions on Maritime Science, 12(1). https://doi.org/10.7225/toms.v12.n01.002.

14. Yakovlieva, A., & Boichenko, S. (2020). Energy Efficient Renewable Feedstock for Alternative Motor Fuels Production: Solutions for Ukraine. Studies in Systems, Decision and Control, 298, 247-259. https://doi.org/10.1007/978-3-030-48583-2_16.

15. Rudavsʹkyy, D., Shefer, M., Kanyuk, Yu., Shpak, Z., & Ripak, N. (2021). Calculation model for the evaluation of tired defect development in the freight wagon side frame. Ukrainian Journal of Information Technology, 3(2), 15-20. https://doi.org/10.23939/ujit2021.02.015.

16. Płaczek, M., Wróbel, A., & Baier, A. (2015). Computer-aided strength analysis of the modernized freight wagon. IOP Conference Series Materials Science and Engineering, 95(1), 012042. https://doi.org/10.1088/1757-899X/95/1/012042.

17. Łukasik, Z., & Ushakov, A. (2020). Concept “Smart freight wagon”. Journal of Civil Engineering and Transport, 2(1), 19-33. https://doi.org/10.24136/tren.2020.002.

18. Pɫaczek, M., Wróbel, A., & Buchacz, A. (2016). A concept of technology for freight wagons modernization. IOP Conference Series: Materials Science and Engineering, 161, 012107. https://doi.org/10.1088/1757-899x/161/1/012107.

19. Patrascu, A., Hadar, A., & Pastrama, S. (2019). Structural Analysis of a Freight Wagon with Composite Walls. Materiale Plastice, 57(2), 140-151. https://doi.org/10.37358/MP.20.2.5360.

20. Fomin, O., Lovska, A., Píštěk, V., & Kučera, P. (2019). Dynamic load computational modelling of containers placed on a flat wagon at railroad ferry transportation. Vibroengineering Procedia, 29, 118-123. https://doi.org/10.21595/vp.2019.21132.

21. Fomin, O., Lovska, A., Radkevych, V., Horban, A., Skliarenko, I., & Gurenkova, O. (2019). The dynamic loading analysis of containers placed on a flat wagon during shunting collisions. ARPN Journal of Engineering and Applied Sciences, 14(21), 3747-3752.

22. Gubarevych, O., Goolak, S., Melkonova, I., & Yurchenko, M. (2022). Structural diagram of the built-in diagnostic system for electric drives of vehicles. Diagnostyka, 23(4), 2022406. https://doi.org/10.29354/diag/156382.

23. Okorokov, A. M., Fomin, O. V., Lovska, A. O., Vernigora, R. V., Zhuravel, I. L., & Fomin, V. V. (2018). Research into a possibility to prolong the time of operation of universal semi-wagon bodies that have exhausted their standard resource. Eastern-European journal of enterprise technologies, 3/7(93), 20-26. https://doi.org/10.15587/1729-4061.2018.131309.

24. Kondratiev, A., & Slivinsky, M. (2018). Method for determining the thickness of a binder layer at its non-uniform mass transfer inside the channel of a honeycomb filler made from polymeric paper. Eastern-European Journal of Enterprise Technologies, 6(5(96)), 42-48. https://doi.org/10.15587/1729-4061.2018.150387.

25. Kondratiev, А. (2019). Improving the mass efficiency of a composite launch vehicle head fairing with a sandwich structure. Eastern-European Journal of Enterprise Technologies, 6(7(102)), 6-18. https://doi.org/10.15587/1729-4061.2019.184551.

 

Visitors

7331476
Today
This Month
All days
998
20979
7331476

Guest Book

If you have questions, comments or suggestions, you can write them in our "Guest Book"

Registration data

ISSN (print) 2071-2227,
ISSN (online) 2223-2362.
Journal was registered by Ministry of Justice of Ukraine.
Registration number КВ No.17742-6592PR dated April 27, 2011.

Contacts

D.Yavornytskyi ave.,19, pavilion 3, room 24-а, Dnipro, 49005
Tel.: +38 (056) 746 32 79.
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
You are here: Home Authors and readers terms of subscription EngCat Archive 2024 Content №4 2024 Strength analysis of the model 918 wagon under non-typical bulk loads